Development of an INDEL typing system for ctx+ strains of Vibrio cholerae from the seventh pandemic

Sergey O. Vodopyanov , Alexey S. Vodopyanov

Epidemiology and Infectious Diseases ›› 2024, Vol. 29 ›› Issue (4) : 285 -294.

PDF (1130KB)
Epidemiology and Infectious Diseases ›› 2024, Vol. 29 ›› Issue (4) : 285 -294. DOI: 10.17816/EID631523
Original study articles
research-article

Development of an INDEL typing system for ctx+ strains of Vibrio cholerae from the seventh pandemic

Author information +
History +
PDF (1130KB)

Abstract

BACKGROUND: The seventh cholera pandemic is accompanied by the formation of Vibrio cholerae clones with new genetic properties, including those with the ability to spread pandemically and cause diseases with a more severe clinical course. The widespread distribution of such genetic variants of Vibrio cholerae and the possibility of their introduction into the territory of the Russian Federation necessitate constant comprehensive monitoring using modern molecular genetic technologies.

AIM: To improve INDEL typing of ctx+ strains of V. cholerae of the seventh pandemic by using additional INDEL loci.

Materials and methods: A bioinformatic analysis of 2105 full-genome sequences of toxigenic ctxAB+tcpA+ strains of Vibrio cholerae O1 El Tor from open databases was carried out in order to search for INDEL loci for molecular typing. Based on the convenience criterion for allele size identification, eight INDEL loci were selected. Three loci have been described previously, and five were identified as a result of this work. The designed primers formed amplicons ranging in size from 67 to 390 base pairs, which made it possible to confidently identify them during gel electrophoresis.

Results: The distribution of alleles formed 11 unique INDEL clusters, which we designated A-K. Based on the number of strains within the clusters, three types of clusters were identified: major (A, B and C) made up 89% of the total number of sequences studied, intermediate (D, E, F, G and H) 10.5% of the genomes. Three minor clusters (I, J and K) were represented by single strains. Four clusters united strains isolated in the 20th century (A — in 1941, F — in 1957, G — in 1993, E — in 1999), and seven clusters — in the 21st century in the period from 2003 to 2016. In the period from 2019 to 2023, representatives of INDEL clusters were active: A, B, D and E.

ConclusionS: The study of the timing of circulation suggested that representatives of different clusters have different epidemic potential, which was manifested in the absence of isolation of strains of some clusters in recent years. A comparative study of INDEL typing with SNP typing in the in silico analysis of 378 genomes of strains isolated on the African continent indicates that the proposed INDEL typing method is not inferior to SNP typing in terms of resolution.

Keywords

Vibrio cholerae / molecular typing / INDEL loci / INDEL genotyping

Cite this article

Download citation ▾
Sergey O. Vodopyanov, Alexey S. Vodopyanov. Development of an INDEL typing system for ctx+ strains of Vibrio cholerae from the seventh pandemic. Epidemiology and Infectious Diseases, 2024, 29(4): 285-294 DOI:10.17816/EID631523

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ramamurthy T, Mutreja A, Weill FX, et al. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholera. Front Public Health. 2019;7:203. doi: 10.3389/fpubh.2019.00203 Erratum in: Front Public Health. 2019;7:237. doi: 10.3389/fpubh.2019.00237

[2]

Ramamurthy T., Mutreja A., Weill F.X., et al. Revisiting the global epidemiology of cholera in conjuction with the genomics of Vibrio cholera // Front Public Health. 2019. Vol. 7. P. 203. doi: 10.3389/fpubh.2019.00203 Erratum in: Front Public Health. 2019. Vol. 7. P. 237. doi: 10.3389/fpubh.2019.00237

[3]

Smirnova NI, Rybalchenko DA, Lozovskiy YV, et al. Analysis of changes in the genome of Vibrio cholerae O1 El Tor genovariants during the current period of the cholera pandemic. Journal of Microbiology, Epidemiology and Immunobiology. 2023;100(5):346–357. (In Russ.) doi: 10.36233/0372-9311-389

[4]

Смирнова Н.И., Рыбальченко Д.А., Лозовский Ю.В., и др. Анализ изменения генома геновариантов Vibriocholerae О1 El Tor в современный период пандемии холеры // Журнал микробиологии, эпидемиологии и иммунобиологии. 2023. Т. 100, № 5. С. 346–357. doi: 10.36233/0372-9311-389

[5]

Jubyda FT, Nahar KS, Barman I, et al. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathog. 2023;15(1):17. doi: 10.1186/s13099-023-00537-0

[6]

Jubyda F.T., Nahar K.S., Barman I., et al. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh // Gut Pathog. 2023. Vol. 15, N 1. P. 17. doi: 10.1186/s13099-023-00537-0

[7]

Onishchenko GG, Moskvitina EA, Vodop’janov AS, et al. Retrospective Molecular-Epidemiological Analysis of Cholera Epidemic in the Republic of Dagestan in 1994. Problems of Particularly Dangerous Infections. 2016;(4):33–41. (In Russ.) doi: 10.21055/0370-1069-2016-4-33-41

[8]

Онищенко Г.Г., Москвитина Э.А., Водопьянов А.С., и др. Ретроспективный молекулярно-эпидемиологический анализ эпидемии холеры в Республике Дагестан в 1994 г. // Проблемы особо опасных инфекций. 2016. № 4. С. 33–41. doi: 10.21055/0370-1069-2016-4-33-41

[9]

Noskov AK, Kruglikov VD, Lopatin AA, et al. Results of cholera monitoring in administrative territories of Russia from 2013 to 2019. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(2):163–175. doi: 10.36233/0372-9311-56

[10]

Носков А.К., Кругликов В.Д., Лопатин А.А., и др. Результаты мониторинга холеры на административных территориях России в период с 2013 по 2019 год // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 2. C. 163–175. doi: 10.36233/0372-9311-56

[11]

Mishankin BH, Vodopyanov AS, Lomov YuM, et al. Retrospective VNTR-Analysis of Genotypes of Vibrio Cholerae O1 Strains Isolated, During the 7th Cholera Pandemic, in Rostov Region. Molecular Genetics, Microbiology and Virology. 2004;(4):28. (In Russ.) EDN: OJXXPF

[12]

Мишанькин Б.H., Водопьянов А.С., Ломов Ю.M.,и др. Ретроспективный VNTR-анализ генотипов штаммов Vibriocholerae O1, выделенных на территории Ростовской области в годы VII пандемии холеры // Молекулярная генетика, микробиология и вирусология. 2004. № 4. С. 28. EDN: OJXXPF

[13]

Danin-Poleg Y, Cohen LA, Gancz H, et al. Vibrio cholerae Strain Typing and Phylogeny Study Based on Simple Sequence Repeats. J Clin Microbiol. 2007;45(3):736–746. doi: 10.1128/jcm.01895-06

[14]

Danin-Poleg Y., Cohen L.A., Gancz H., et al. Vibrio cholerae Strain Typing and Phylogeny Study Based on Simple Sequence Repeats // J Clin Microbiol. 2007. Vol. 45, N 3. P. 736–746. doi: 10.1128/jcm.01895-06

[15]

Lam C, Octavia S, Reeves PR, Lan R. Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae. BMC Microbiol. 2012;12:82. doi: 10.1186/1471-2180-12-82

[16]

Lam C., Octavia S., Reeves P.R., Lan R. Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholera // BMC Microbiol. 2012. Vol. 12. P. 82. doi: 10.1186/1471-2180-12-82

[17]

Smirnova NI, Kul’shant’ TA, Krasnov YM. MLVA Typing of Clinical Vibrio Cholerae Strains Isolated During Different Periods of the Current Cholera Pandemic. Molecular Genetics, Microbiology and Virology. 2015;30(1):15–22. (In Russ.) EDN: TEWRYN

[18]

Смирнова Н.И., Кульшань Т.А., Краснов Я.М. MLVA-типирование клинических штаммов Vibriocholerae, изолированных в разные периоды текущей пандемии холеры // Молекулярная генетика, микробиология и вирусология. 2015. Т. 33, № 1. С. 15–22.EDN: TEWRYN

[19]

Bwire G, Sack DA, Almeida M, et al. Molecular characterization of Vibrio cholerae responsible for cholera epidemics in Uganda by PCR, MLVA and WGS. PLoS Negl Trop Dis. 2018;12(6):e0006492. doi: 10.1371/journal.pntd.0006492

[20]

Bwire G., Sack D.A., Almeida M., et al. Molecular characterization of Vibrio cholerae responsible for cholera epidemics in Uganda by PCR, MLVA and WGS // PLoS Negl Trop Dis. 2018. Vol. 12, N 6. P. e0006492. doi: 10.1371/journal.pntd.0006492

[21]

George CM, Hasan K, Monira S, et al. A prospective cohort study comparing household contact and water Vibrio cholerae isolates in households of cholera patients in rural Bangladesh. PLoS Negl Trop Dis. 2018;12(7):e0006641. doi: 10.1371/journal.pntd.0006641

[22]

George C.M., Hasan K., Monira S., et al. A prospective cohort study comparing household contact and water Vibrio cholerae isolates in households of cholera patients in rural Bangladesh // PLoS Negl Trop Dis. 2018. Vol. 12, N 7. P. e0006641. doi: 10.1371/journal.pntd.0006641

[23]

Mironova LV, Khunkheeva ZhYu, Basov EA, et al. Analysis of Vibrio cholerae Genotype Stability at Low Temperature and Nutrients Deficiency. Problems of Particularly Dangerous Infections. 2016;(3):52–56. (In Russ.) doi: 10.21055/0370-1069-2016-3-52-56

[24]

Миронова Л.В., Хунхеева Ж.Ю., Басов Е.А., и др. Анализ стабильности генотипа Vibriocholerae в условиях низкой температуры и дефицита питательных веществ // Проблемы особо опасных инфекций. 2016. № 3. С. 52–56. doi: 10.21055/0370-1069-2016-3-52-56

[25]

Rashid MU, Almeida M, Azman AS, et al. Comparison of inferred relatedness based on multilocus variable-number tandem-repeat analysis and whole genome sequencing of Vibrio cholerae O1. FEMS Microbiol Lett. 2016;363(12):fnw116. doi: 10.1093/femsle/fnw116

[26]

Rashid M.U., Almeida M., Azman A.S., et al. Comparison of inferred relatedness based on multilocus variable-number tandem-repeat analysis and whole genome sequencing of Vibrio cholerae O1 // FEMS Microbiol Lett. 2016. Vol. 363, N 12. P. fnw116. doi: 10.1093/femsle/fnw116

[27]

Ambroise J, Irenge LM, Durant JF, et al. Backward compatibility of whole genome sequencing data with MLVA typing using a new MLVAtype shiny application for Vibrio cholerae. PLoS One. 2019;14(12):e0225848. doi: 10.1371/journal.pone.0225848

[28]

Ambroise J., Irenge L.M., Durant J.F., et al. Backward compatibility of whole genome sequencing data with MLVA typing using a new MLVA type shiny application for Vibrio cholera // PLoS One. 2019. Vol. 14, N 12. P. e0225848. doi: 10.1371/journal.pone.0225848

[29]

Mwaba J, Debes AK, Murt KN, et al. Three transmission events of Vibrio cholerae O1 into Lusaka, Zambia. BMC Infect Dis. 2021;21(1):570. doi: 10.1186/s12879-021-06259-5

[30]

Mwaba J., Debes A.K., Murt K.N., et al. Three transmission events of Vibrio cholerae O1 into Lusaka, Zambia // BMC Infect Dis. 2021. Vol. 21, N 1. P. 570. doi: 10.1186/s12879-021-06259-5

[31]

Vodop’yanov AS, Vodop’yanov SO, Oleynikov IP, Mishan’kin BN. INDEL-genotyping of Vibrio cholerae strains. Epidemiology and Infectious Diseases. 2017;22(4):195–200. (In Russ.) doi: 10.17816/EID40978

[32]

Водопьянов А.С., Водопьянов С.О., Олейников И.П., Мишанькин Б.Н. INDEL-типирование штаммов Vibriocholerae // Эпидемиология и инфекционные болезни. 2017. Т. 22, № 4. C. 195–200. doi: 10.17816/EID40978

[33]

Vodopyanov AS, Vodopyanov SO, Oleynikov IP, et al. INDEL- и VNTR-typing Vibrio cholerae strains, isolated in 2013 from the environment objects in the Russian Federation. Public Health and Life Environment — PH&LE. 2015;(5(266)):41–44. (In Russ.) EDN: UCHPMN

[34]

Водопьянов А.С., Водопьянов С.О., Олейников И.П., и др. INDEL- и VNTR-типирование штаммов Vibriocholerae, выделенных в 2013 году из объектов окружающей среды на территории Российской Федерации // Здоровье населения и среда обитания — ЗНиСО. 2015. № 5 (266). C. 41–44. EDN: UCHPMN

[35]

Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021

[36]

Bankevich A., Nurk S., Antipov D., et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing // J Comput Biol. 2012. Vol. 19, N 5. P. 455–477. doi: 10.1089/cmb.2012.0021

[37]

Benamrouche N, Belkader C, Njamkepo E, et al. Outbreak of Imported Seventh Pandemic Vibrio cholerae O1 El Tor, Algeria, 2018. Emerging Infectious Diseases. 2022;28(6):1241–1245. doi: 10.3201/eid2806.212451

[38]

Benamrouche N., Belkader C., Njamkepo E., et al. Outbreak of Imported Seventh Pandemic Vibrio cholerae O1 El Tor, Algeria, 2018 // Emerging Infectious Diseases. 2022. Vol. 28, N 6. P. 1241–1245. doi: 10.3201/eid2806.212451

[39]

Vodop’yanov AS, Vodop’yanov SO, Oleynikov IP, Pisanov RV. Identification of Vibrio cholerae Strains of the «Haitian» Group by PCR Based on INDEL-Typing. Journal of Microbiology, Epidemiology and Immunobiology. 2020;97(3):265–270. (In Russ.) doi: 10.36233/0372-9311-2020-97-3-9

[40]

Водопьянов А.С., Водопьянов С.О., Олейников И.П., Писанов Р.В. Выявление штаммов Vibriocholerae «гаитянской» группы с помощью полимеразной цепной реакции на основе INDEL-типирования // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 3. C. 265–270. doi: 10.36233/0372-9311-2020-97-3-9

[41]

Monakhova EV, Ghosh A, Mutreja A, Weill F, Ramamurthy T. Endemic Cholera in India and Imported Cholera in Russia: What is Common? Problems of Particularly Dangerous Infections. 2020;(3):17–26. doi: 10.21055/0370-1069-2020-3-17-26

[42]

Monakhova E.V., Ghosh A., Mutreja A., Weill F., Ramamurthy T. Endemic Cholera in India and Imported Cholera in Russia: What is Common? // Problems of Particularly Dangerous Infections. 2020. N 3. P. 17–26. doi: 10.21055/0370-1069-2020-3-17-26

[43]

Mutreja A, Kim DW, Thomson NR, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011;477(7365):462–465. doi: 10.1038/nature10392

[44]

Mutreja A., Kim D.W., Thomson N.R., et al. Evidence for several waves of global transmission in the seventh cholera pandemic // Nature. 2011. Vol. 477, N 7365. P. 462–465. doi: 10.1038/nature10392

[45]

Monir MM, Islam MT, Mazumder R, et al. Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh. Nat Commun. 2023;14(1):1154. doi: 10.1038/s41467-023-36687-7

[46]

Monir M.M., Islam M.T., Mazumder R., et al. Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh // Nat Commun. 2023. Vol. 14, N 1. P. 1154. doi: 10.1038/s41467-023-36687-7

[47]

Weill FX, Domman D, Njamkepo E, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358(6364): 785–789. doi: 10.1126/science.aad5901

[48]

Weill F.X., Domman D., Njamkepo E., et al. Genomic history of the seventh pandemic of cholera in Africa // Science. 2017. Vol. 358, N 6364. P. 785–789. doi: 10.1126/science.aad5901

[49]

Weill FX, Domman D, Njamkepo E, et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen. Nature. 2019;565(7738):230–233. doi: 10.1038/s41586-018-0818-3 Erratum in: Nature. 2019;566(7745):E14. doi: 10.1038/s41586-019-0966-0

[50]

Weill F.X., Domman D., Njamkepo E., et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen // Nature. 2019. Vol. 565, N 7738. P. 230–233. doi: 10.1038/s41586-018-0818-3 Erratum in: Nature. 2019. Vol. 566, N 7745. P. E14. doi: 10.1038/s41586-019-0966-0

[51]

Smith AM, Sekwadi P, Erasmus LK, et al. Imported Cholera Cases, South Africa, 2023. Emerg Infect Dis. 2023;29(8):1687–1690. doi: 10.3201/eid2908.230750

[52]

Smith A.M., Sekwadi P., Erasmus L.K., et al. Imported Cholera Cases, South Africa, 2023 // Emerg Infect Dis. 2023. Vol. 29, N 8. P. 1687–1690. doi: 10.3201/eid2908.230750

[53]

Kuleshov KV, Vodop’ianov SO, Dedkov VG, et al. Travel-Associated Vibrio cholerae O1 El Tor, Russia. Emerging Infectious Diseases. 2016;22(11):2006–2008. doi: 10.3201/eid2211.151727

[54]

Kuleshov K.V., Vodop’ianov S.O., Dedkov V.G., et al. Travel-Associated Vibrio cholerae O1 El Tor, Russia // Emerging Infectious Diseases. 2016. Vol. 22, N 11. P. 2006–2008. doi: 10.3201/eid2211.151727

RIGHTS & PERMISSIONS

Eco-vector

AI Summary AI Mindmap
PDF (1130KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/