The possibility of predicting the COVID-19 severity by clinical-laboratory criteria taking into account the SARS-CoV-2 strain: An analytical review

Victoria B. Poluektova , Maria V. Sankova , Elena V. Volchkova , Svetlana N. Larina , Natalia V. Maloletneva , Olga Yu. Shabalina , Polina A. Lisova , Daria A. Rochlina , Olga V. Darvina

Epidemiology and Infectious Diseases ›› 2024, Vol. 29 ›› Issue (3) : 192 -203.

PDF (814KB)
Epidemiology and Infectious Diseases ›› 2024, Vol. 29 ›› Issue (3) : 192 -203. DOI: 10.17816/EID629244
Reviews
review-article

The possibility of predicting the COVID-19 severity by clinical-laboratory criteria taking into account the SARS-CoV-2 strain: An analytical review

Author information +
History +
PDF (814KB)

Abstract

The survival of patients with severe COVID-19 depends on timely and adequate assessment of the risk of adverse disease outcomes. Currently, conflicting data on the prognostic value of various laboratory parameters in severe COVID-19 caused by different SARS-CoV-2 variants require analysis and systematization. The leading clinical and laboratory signs that determine the severity of COVID-19 include the syndrome of systemic inflammatory reaction and hemostasis disorders, which, in conditions of high viral load, hypoxia, and toxic exposure, contribute to the development of cytolytic syndrome, cytopenia, and multiple organ failure. Biological and immunological features of SARS-CoV-2 variants have an important influence on the severity of the infection. Based on literature sources, we have listed the most significant laboratory parameters, which, combined with clinical criteria, serve as an accurate guide for physicians both in monitoring patients and selecting therapy in Russia and abroad. Some SARS-CoV-2 variants exhibit reduced susceptibility to monoclonal antibodies and recombination plasma, which requires a revision of the therapy strategy. Detailed analysis of pathognomonic laboratory parameters and understanding of the immunological response to a particular SARS-CoV-2 variant will quickly and accurately identify the vulnerable patient groups, timely change in their therapy, and prevent complication development.

Keywords

severe COVID-19 / laboratory predictors / SARS-CoV-2 strains / Wuhan strain / alpha variant / beta variant / gamma variant / delta variant / omicron variant / COVID-19 treatment

Cite this article

Download citation ▾
Victoria B. Poluektova, Maria V. Sankova, Elena V. Volchkova, Svetlana N. Larina, Natalia V. Maloletneva, Olga Yu. Shabalina, Polina A. Lisova, Daria A. Rochlina, Olga V. Darvina. The possibility of predicting the COVID-19 severity by clinical-laboratory criteria taking into account the SARS-CoV-2 strain: An analytical review. Epidemiology and Infectious Diseases, 2024, 29(3): 192-203 DOI:10.17816/EID629244

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Temporary methodological recommendations: prevention, diagnosis and treatment of new coronary infection (COVID-19). Version 17 (14.12.2022). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/252/original/ВМР_COVID-19_V17.pdf (In Russ.)

[2]

Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 17 (14.12.2022). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/252/original/ВМР_COVID-19_V17.pdf

[3]

Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91(1):157–160. doi: 10.23750/abm.v91i1.9397

[4]

Cucinotta D., Vanelli M. WHO Declares COVID-19 a Pandemic // Acta Biomed. 2020. Vol. 91, N 1. P. 157–160. doi: 10.23750/abm.v91i1.9397

[5]

Saberiyan M, Karimi E, Khademi Z, et al. SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cell Mol Biol Lett. 2022;27(1):50. doi: 10.1186/s11658-022-00352-6

[6]

Saberiyan M., Karimi E., Khademi Z., et al. SARS-CoV-2: phenotype, genotype, and characterization of different variants // Cell Mol Biol Lett. 2022. Vol. 27, N 1. P. 50. doi: 10.1186/s11658-022-00352-6

[7]

Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5

[8]

Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // Lancet Respir Med. 2020. Vol. 8, N 5. P. 475–481. doi: 10.1016/S2213-2600(20)30079-5

[9]

Guan WJ, Ni ZY, Hu Y, et al.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032

[10]

Guan W.-J., Ni Z.-Y., Hu Y., et al.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China // N Engl J Med. 2020. Vol. 382, N 18. P. 1708–1720. doi: 10.1056/NEJMoa2002032

[11]

Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244

[12]

Chen G., Wu D., Guo W., et al. Clinical and immunological features of severe and moderate coronavirus disease 2019 // J Clin Invest. 2020. Vol. 130, N 5. P. 2620–2629. doi: 10.1172/JCI137244

[13]

Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol. 2020;92(11):2283–2285. doi: 10.1002/jmv.25948

[14]

Aziz M., Fatima R., Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis // J Med Virol. 2020. Vol. 92, N 11. P. 2283–2285. doi: 10.1002/jmv.25948

[15]

Khizroeva JH, Makatsariya AD, Bitsadze VO, et al. Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers. Obstetrics, Gynecology and Reproduction. 2020;14(2): 132–147. (In Russ.) doi: 10.17749/2313-7347.141

[16]

Хизроева Д.Х., Макацария А.Д., Бицадзе В.О., и др. Лабораторный мониторинг COVID-19 и значение определения маркеров коагулопатии // Акушерство, Гинекология и Репродукция. 2020. Т. 14, № 2. С. 132–147. doi: 10.17749/2313-7347.141

[17]

Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370

[18]

Liu F., Li L., Xu M., et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19 // J Clin Virol. 2020. Vol. 127. P. 104370. doi: 10.1016/j.jcv.2020.104370

[19]

Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118. doi: 10.1016/j.jaci.2020.04.006

[20]

Li X., Xu S., Yu M., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan // J Allergy Clin Immunol. 2020. Vol. 146, N 1. P. 110–118. doi: 10.1016/j.jaci.2020.04.006

[21]

McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med. 2020;202(6):812–821. doi: 10.1164/rccm.202005-1583OC

[22]

McElvaney O.J., McEvoy N.L., McElvaney O.F., et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness // Am J Respir Crit Care Med. 2020. Vol. 202, N 6. P. 812–821. doi: 10.1164/rccm.202005-1583OC

[23]

Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131–1134. doi: 10.1515/cclm-2020-0198

[24]

Lippi G., Plebani M. Laboratory abnormalities in patients with COVID-2019 infection // Clin Chem Lab Med. 2020. Vol. 58, N 7. P. 1131–1134. doi: 10.1515/cclm-2020-0198

[25]

Sack GH Jr. Serum amyloid A — a review. Mol Med. 2018;24(1):46. doi: 10.1186/s10020-018-0047-0

[26]

Sack G.H. Jr. Serum amyloid A — a review // Mol Med. 2018. Vol. 24, N 1. P. 46. doi: 10.1186/s10020-018-0047-0

[27]

Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal. 2020;34(10):e23618. doi: 10.1002/jcla.23618

[28]

Cheng L., Li H., Li L., et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis // J Clin Lab Anal. 2020. Vol. 34, N 10. P. e23618. doi: 10.1002/jcla.23618

[29]

Taneri PE, Gómez-Ochoa SA, Llanaj E, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763–773. doi: 10.1007/s10654-020-00678-5

[30]

Taneri P.E., Gómez-Ochoa S.A., Llanaj E., et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis // Eur J Epidemiol. 2020. Vol. 35, N 8. P. 763–773. doi: 10.1007/s10654-020-00678-5

[31]

Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4

[32]

Tan L., Wang Q., Zhang D., et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study // Signal Transduct Target Ther. 2020. Vol. 5, N 1. P. 33. doi: 10.1038/s41392-020-0148-4

[33]

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3

[34]

Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395, N 10229. P. 1054–1062. doi: 10.1016/S0140-6736(20)30566-3

[35]

Lutckii AA, Zhirkov AA, Lobzin DYu, et al. Interferon-γ: biological function and application for study of cellular immune response. Journal Infectology. 2015;7(4):10–22. (In Russ.) doi: 10.22625/2072-6732-2015-7-4-10-22

[36]

Луцкий А.А., Жирков А.А., Лобзин Д.Ю., и др. Интерферон-γ: биологическая функция и значение для диагностики клеточного иммунного ответа // Журнал инфектологии. 2015. Т. 7, № 4. С. 10–22. doi: 10.22625/2072-6732-2015-7-4-10-22

[37]

Klypa TV, Bychinin MV, Mandel IA, et al. Clinical characteristics of patients admitted to an ICU with COVID-19. Predictors of the severe disease. Journal of Clinical Practice. 2020;11(2):6–20. (In Russ.) doi: 10.17816/clinpract34182

[38]

Клыпа Т.В., Бычинин М.В., Мандель И.А., и др. Клиническая характеристика пациентов с COVID-19, поступающих в отделение интенсивной терапии. Предикторы тяжёлого течения // Клиническая практика. 2020. Т. 11, № 2. C. 6–20. doi: 10.17816/clinpract34182

[39]

Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733–1734. doi: 10.1002/jmv.25819

[40]

Lagunas-Rangel F.A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis // J Med Virol. 2020. Vol. 92, N 10. P. 1733–1734. doi: 10.1002/jmv.25819

[41]

Pereira MAM, Barros ICA, Jacob ALV, et al. Laboratory findings in SARS-CoV-2 infections: State of the art. Rev Assoc Med Bras (1992). 2020;66(8):1152–1156. doi: 10.1590/1806-9282.66.8.1152

[42]

Pereira M.A.M., Barros I.C.A., Jacob A.L.V, et al. Laboratory findings in SARS-CoV-2 infections: State of the art // Rev Assoc Med Bras (1992). 2020. Vol. 66, N 8. P. 1152–1156. doi: 10.1590/1806-9282.66.8.1152

[43]

Qu R, Ling Y, Zhang YHZ, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533–1541. doi: 10.1002/jmv.25767

[44]

Qu R., Ling Y., Zhang Y.-H.-Z., et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19 // J Med Virol. 2020. Vol. 92, N 9. P. 1533–1541. doi: 10.1002/jmv.25767

[45]

Spiezia L, Boscolo A, Poletto F, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. 2020;120(6):998–1000. doi: 10.1055/s-0040-1710018

[46]

Spiezia L., Boscolo A., Poletto F., et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure // Thromb Haemost. 2020. Vol. 120, N 6. P. 998–1000. doi: 10.1055/s-0040-1710018

[47]

Makatsariya AD, Slukhanchuk EV, Bitsadze VO, et al. COVID-19, hemostasis disorders and risk of thrombotic complications. Annals of the Russian Academy of Medical sciences. 2020;75(4):306–317. (In Russ.) doi: 10.15690/vramn1368

[48]

Макацария А.Д., Слуханчук Е.В., Бицадзе В.О., и др. COVID-19, нарушения гемостаза и риск тромботических осложнений // Вестник Российской академии медицинских наук. 2020. Т. 75, № 4. С. 306–317. doi: 10.15690/vramn1368

[49]

Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev. 2020;100(3):1065–1075. doi: 10.1152/physrev.00013.2020

[50]

Ji H.-L., Zhao R., Matalon S., Matthay M.A. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility // Physiol Rev. 2020. Vol. 100, N 3. P. 1065–1075. doi: 10.1152/physrev.00013.2020

[51]

Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–1751. doi: 10.1111/jth.14854

[52]

Ranucci M., Ballotta A., Di Dedda U., et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome // J Thromb Haemost. 2020. Vol. 18, N 7. P. 1747–1751. doi: 10.1111/jth.14854

[53]

Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–1026. doi: 10.1111/jth.14810

[54]

Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19 // J Thromb Haemost. 2020. Vol. 18, N 5. P. 1023–1026. doi: 10.1111/jth.14810

[55]

Aksenova A.Y. Von Willebrand factor and endothelial damage: a possible association with COVID-19. Ecological genetics. 2020;18(2):135–138. (In Russ.) doi: 10.17816/ecogen33973

[56]

Аксёнова А.Ю. Фактор Фон Виллебранда и повреждение эндотелия: возможная связь с COVID-19 // Экологическая генетика. 2020. Т. 18, № 2. С. 135–138. doi: 10.17816/ecogen33973

[57]

Yang Z, Shi J, He Z, et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY). 2020;12(7):6037–6048. doi: 10.18632/aging.102999

[58]

Yang Z., Shi J., He Z., et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients // Aging (Albany NY). 2020. Vol. 12, N 7. P. 6037–6048. doi: 10.18632/aging.102999

[59]

Misra A, Ghosh A, Gupta R. Heterogeneity in presentation of hyperglycaemia during COVID-19 pandemic: A proposed classification. Diabetes Metab Syndr. 2021;15(1):403–406. doi: 10.1016/j.dsx.2021.01.018

[60]

Misra A., Ghosh A., Gupta R. Heterogeneity in presentation of hyperglycaemia during COVID-19 pandemic: A proposed classification // Diabetes Metab Syndr. 2021. Vol. 15, N 1. P. 403–406. doi: 10.1016/j.dsx.2021.01.018

[61]

Klypa TV, Orehova MS, Zabrosaeva LI. Hyperglycaemia in criticaly ill patients. Diabetes mellitus. 2015;18(1):33–41. (In Russ.) doi: 10.14341/DM2015133-41

[62]

Клыпа Т.В., Орехова М.С., Забросаева Л.И. Гипергликемия критических состояний // Сахарный диабет. 2015. Т. 18, № 1. С. 33–41. doi: 10.14341/DM2015133-41

[63]

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122

[64]

Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms // ACS Chem Neurosci. 2020. Vol. 11, N 7. P. 995–998. doi: 10.1021/acschemneuro.0c00122

[65]

Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031

[66]

Wu Y., Xu X., Chen Z., et al. Nervous system involvement after infection with COVID-19 and other coronaviruses // Brain Behav Immun. 2020. Vol. 87. P. 18–22. doi: 10.1016/j.bbi.2020.03.031

[67]

Mohammad S, Mishra A, Ashraf MZ. Emerging Role of Vitamin D and its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis. Biomolecules. 2019;9(11):649. doi: 10.3390/biom9110649

[68]

Mohammad S., Mishra A., Ashraf M.Z. Emerging Role of Vitamin D and its Associated Molecules in Pathways Related to Pathogenesis of Thrombosis // Biomolecules. 2019. Vol. 9, N 11. P. 649. doi: 10.3390/biom9110649

[69]

Gubenko NS, Budko AA, Plisyuk AG, Orlova IA. Association of general blood count indicators with the severity of COVID-19 in hospitalized patients. South Russian Journal of Therapeutic Practice. 2021;2(1):90–101. (In Russ.) doi: 10.21886/2712-8156-2021-2-1-90-101

[70]

Губенко Н.С., Будко А.А., Плисюк А.Г., Орлова Я.А. Связь показателей общего анализа крови с тяжестью течения COVID-19 у госпитализированных пациентов // Южно-Российский журнал терапевтической практики. 2021. Т. 2, № 1. С. 90–101. doi: 10.21886/2712-8156-2021-2-1-90-101

[71]

Simon J, Grodecki K, Cadet S, et al. Radiomorphological signs and clinical severity of SARS-CoV-2 lineage B.1.1.7. BJR Open. 2022;4(1):20220016. doi: 10.1259/bjro.20220016

[72]

Simon J., Grodecki K., Cadet S., et al. Radiomorphological signs and clinical severity of SARS-CoV-2 lineage B.1.1.7 // BJR Open. 2022. Vol. 4, N 1. P. 20220016. doi: 10.1259/bjro.20220016

[73]

Akkız H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front Med (Lausanne). 2022;9:849217. doi: 10.3389/fmed.2022.849217

[74]

Akkız H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern // Front Med (Lausanne). 2022. Vol. 9. P. 849217. doi: 10.3389/fmed.2022.849217

[75]

Gupta RK. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol. 2021;21(6):340–341. doi: 10.1038/s41577-021-00556-5

[76]

Gupta R.K. Will SARS-CoV-2 variants of concern affect the promise of vaccines? // Nat Rev Immunol. 2021. Vol. 21, N 6. P. 340–341. doi: 10.1038/s41577-021-00556-5

[77]

Hirabara SM, Serdan TDA, Gorjao R, et al. SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Front Cell Infect Microbiol. 2022;11:781429. doi: 10.3389/fcimb.2021.781429

[78]

Hirabara S.M., Serdan T.D.A., Gorjao R., et al. SARS-COV-2 Variants: Differences and Potential of Immune Evasion // Front Cell Infect Microbiol. 2022. Vol. 11. P. 781429. doi: 10.3389/fcimb.2021.781429

[79]

Van Goethem N, Vandromme M, Van Oyen H, et al. Severity of infection with the SARS-CoV-2 B.1.1.7 lineage among hospitalized COVID-19 patients in Belgium. PLoS One. 2022;17(6):e0269138. doi: 10.1371/journal.pone.0269138

[80]

Van Goethem N., Vandromme M., Van Oyen H., et al. Severity of infection with the SARS-CoV-2 B.1.1.7 lineage among hospitalized COVID-19 patients in Belgium // PLoS One. 2022. Vol. 17, N 6. P. e0269138. doi: 10.1371/journal.pone.0269138

[81]

Giles B, Meredith P, Robson S, et al. The SARS-CoV-2 B.1.1.7 variant and increased clinical severity-the jury is out. Lancet Infect Dis. 2021;21(9):1213–1214. doi: 10.1016/S1473-3099(21)00356-X

[82]

Giles B., Meredith P., Robson S., et al. The SARS-CoV-2 B.1.1.7 variant and increased clinical severity-the jury is out // Lancet Infect Dis. 2021. Vol. 21, N 9. P. 1213–1214. doi: 10.1016/S1473-3099(21)00356-X

[83]

Spinicci M, Graziani L, Tilli M, et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses. 2022;14(11):2367. doi: 10.3390/v14112367

[84]

Spinicci M., Graziani L., Tilli M., et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes // Viruses. 2022. Vol. 14, N 11. P. 2367. doi: 10.3390/v14112367

[85]

Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill. 2021;26(16):2100348. doi: 10.2807/1560-7917.ES.2021.26.16.2100348

[86]

Funk T., Pharris A., Spiteri G., et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021 // Euro Surveill. 2021. Vol. 26, N 16. P. 2100348. doi: 10.2807/1560-7917.ES.2021.26.16.2100348

[87]

Conti P, Caraffa A, Gallenga CE, et al. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. J Biol Regul Homeost Agents. 2021;35(1):1–4. doi: 10.23812/21-3-E

[88]

Conti P., Caraffa A., Gallenga C.E., et al. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem // J Biol Regul Homeost Agents. 2021. Vol. 35, N 1. P. 1–4. doi: 10.23812/21-3-E

[89]

Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021;27(4):622–625. doi: 10.1038/s41591-021-01285-x

[90]

Wibmer C.K., Ayres F., Hermanus T., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma // Nat Med. 2021. Vol. 27, N 4. P. 622–625. doi: 10.1038/s41591-021-01285-x

[91]

Khan A, Khan T, Ali S, et al. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed Pharmacother. 2021;143:112176. doi: 10.1016/j.biopha.2021.112176

[92]

Khan A., Khan T., Ali S., et al. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines // Biomed Pharmacother. 2021. Vol. 143. P. 112176. doi: 10.1016/j.biopha.2021.112176

[93]

Duong D. Alpha, Beta, Delta, Gamma: what’s important to know about SARS-CoV-2 variants of concern? CMAJ. 2021;193(27): E1059–E1060. doi: 10.1503/cmaj.1095949

[94]

Duong D. Alpha, Beta, Delta, Gamma: what’s important to know about SARS-CoV-2 variants of concern? // CMAJ. 2021. Vol. 193, N 27. P. E1059–E1060. doi: 10.1503/cmaj.1095949

[95]

Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130–135. doi: 10.1038/s41586-021-03398-2

[96]

Wang P., Nair M.S., Liu L., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 // Nature. 2021. Vol. 593, N 7857. P. 130–135. doi: 10.1038/s41586-021-03398-2

[97]

Ong SWX, Chiew CJ, Ang LW, et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022;75(1):e1128–e1136. doi: 10.1093/cid/ciab721

[98]

Ong S.W.X., Chiew C.J., Ang L.W., et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta) // Clin Infect Dis. 2022. Vol. 75, N 1. P. e1128–e1136. doi: 10.1093/cid/ciab721

[99]

Esper FP, Adhikari TM, Tu ZJ, et al. Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants. J Infect Dis. 2023;227(3):344–352. doi: 10.1093/infdis/jiac411

[100]

Esper F.P., Adhikari T.M., Tu Z.J., et al. Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants // J Infect Dis. 2023. Vol. 227, N 3. P. 344–352. doi: 10.1093/infdis/jiac411

[101]

Gökharman FD, Ertem GT, Aydın S, et al. Evaluation of thorax computed tomographic findings in COVID-19 variant cases. Respir Investig. 2022;60(3):364–368. doi: 10.1016/j.resinv.2021.11.013

[102]

Gökharman F.D., Ertem G.T., Aydın S., et al. Evaluation of thorax computed tomographic findings in COVID-19 variant cases // Respir Investig. 2022. Vol. 60, N 3. P. 364–368. doi: 10.1016/j.resinv.2021.11.013

[103]

Wang P, Casner RG, Nair MS, et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. Cell Host Microbe. 2021;29(5):747–751.e4. doi: 10.1016/j.chom.2021.04.007

[104]

Wang P., Casner R.G., Nair M.S., et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization // Cell Host Microbe. 2021. Vol. 29, N 5. P. 747–751.e4. doi: 10.1016/j.chom.2021.04.007

[105]

Adam D. The rush to study fast-spreading coronavirus variants. Nature. 2021;594(7861):19–20. doi: 10.1038/d41586-021-01390-4

[106]

Adam D. The rush to study fast-spreading coronavirus variants // Nature. 2021. Vol. 594, N 7861. P. 19–20. doi: 10.1038/d41586-021-01390-4

[107]

Viceconte G, Ponsiglione A, Buonomo AR, et al. COVID-19 chest CT and laboratory features of B.1.617.2 (Delta variant) vs B.1.1.7 (Alpha variant) surge: a single center case-control study. Infez Med. 2022;30(4):555–562. doi: 10.53854/liim-3004-10

[108]

Viceconte G., Ponsiglione A., Buonomo A.R., et al. COVID-19 chest CT and laboratory features of B.1.617.2 (Delta variant) vs B.1.1.7 (Alpha variant) surge: a single center case-control study // Infez Med. 2022. Vol. 30, N 4. P. 555–562. doi: 10.53854/liim-3004-10

[109]

Koc I. Clinical and Laboratory Differences between Delta and UK Variants of SARS-CoV-2: B.1.617.2 and B.1.1.7. Tohoku J Exp Med. 2022;257(4):273–281. doi: 10.1620/tjem.2022.J041

[110]

Koc I. Clinical and Laboratory Differences between Delta and UK Variants of SARS-CoV-2: B.1.617.2 and B.1.1.7 // Tohoku J Exp Med. 2022. Vol. 257, N 4. P. 273–281. doi: 10.1620/tjem.2022.J041

[111]

Liu J, Liu Y, Xia H, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature. 2021;596(7871): 273–275. doi: 10.1038/s41586-021-03693-y

[112]

Liu J., Liu Y., Xia H., et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants // Nature. 2021. Vol. 596, N 7871. P. 273–275. doi: 10.1038/s41586-021-03693-y

[113]

Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280. doi: 10.1038/s41586-021-03777-9

[114]

Planas D., Veyer D., Baidaliuk A., et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization // Nature. 2021. Vol. 596, N 7871. P. 276–280. doi: 10.1038/s41586-021-03777-9

[115]

Tong C, Shi W, Zhang A, Shi Z. Tracking and controlling the spatiotemporal spread of SARS-CoV-2 Omicron variant in South Africa. Travel Med Infect Dis. 2022;46:102252. doi: 10.1016/j.tmaid.2021.102252

[116]

Tong C., Shi W., Zhang A., Shi Z. Tracking and controlling the spatiotemporal spread of SARS-CoV-2 Omicron variant in South Africa // Travel Med Infect Dis. 2022. Vol. 46. P. 102252. doi: 10.1016/j.tmaid.2021.102252

[117]

Chen J, Wang R, Gilby NB, Wei GW. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J Chem Inf Model. 2022;62(2):412–422. doi: 10.1021/acs.jcim.1c01451

[118]

Chen J., Wang R., Gilby N.B., Wei G.-W. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance // J Chem Inf Model. 2022. Vol. 62, N 2. P. 412–422. doi: 10.1021/acs.jcim.1c01451

[119]

Jang YR, Kim JM, Rhee JE, et al. Clinical Features and Duration of Viral Shedding in Individuals With SARS-CoV-2 Omicron Variant Infection. Open Forum Infect Dis. 2022;9(7):ofac237. doi: 10.1093/ofid/ofac237

[120]

Jang Y.R., Kim J.-M., Rhee J.E., et al. Clinical Features and Duration of Viral Shedding in Individuals With SARS-CoV-2 Omicron Variant Infection // Open Forum Infect Dis. 2022. Vol. 9, N 7. P. ofac237. doi: 10.1093/ofid/ofac237

[121]

Rodriguez-Sevilla JJ, Güerri-Fernádez R, Bertran Recasens B. Is There Less Alteration of Smell Sensation in Patients with Omicron SARS-CoV-2 Variant Infection? Front Med. 2022;9:852998. doi: 10.3389/fmed.2022.852998

[122]

Rodriguez-Sevilla J.J., Güerri-Fernádez R., Bertran Recasens B. Is There Less Alteration of Smell Sensation in Patients with Omicron SARS-CoV-2 Variant Infection? // Front Med. 2022. Vol. 9. P. 852998. doi: 10.3389/fmed.2022.852998

[123]

Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022; 602(7898):657–663. doi: 10.1038/s41586-021-04385-3

[124]

Cao Y., Wang J., Jian F., et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies // Nature. 2022. Vol. 602, N 7898. P. 657–663. doi: 10.1038/s41586-021-04385-3

RIGHTS & PERMISSIONS

Eco-vector

AI Summary AI Mindmap
PDF (814KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/