Manifestation of epidemic process, clinical and epidemiological characteristics of adult patients in the early period of the COVID-19 epidemic in Russia
Anastasia A. Fomicheva , Nikolay N. Pimenov , Svetlana V. Komarova , Aleksandr V. Urtikov , Artur R. Sakhautdinov , Daria A. Strelkova , Galina V. Nekludova , Svetlana A. Rachina , Sergey N. Avdeev , Vladimir P. Chulanov
Epidemiology and Infectious Diseases ›› 2024, Vol. 29 ›› Issue (2) : 92 -107.
Manifestation of epidemic process, clinical and epidemiological characteristics of adult patients in the early period of the COVID-19 epidemic in Russia
BACKGROUND: The COVID-19 pandemic became a challenge and caused significant social and economic damage to most countries. For the most objective assessment of the epidemiological and clinical features of COVID-19 during different periods of the epidemic, studies based on a large volume of data on patients identified throughout the Russian Federation are necessary.
AIM: To analyze the epidemic process and clinical and epidemiological features of adult patients with COVID-19 identified during the first and second periods of the rise and decline in the incidence of COVID-19 in Russia.
MATERIALS AND METHODS: This study included patients aged ≥18 years with a confirmed diagnosis of COVID-19 and identified in the periods from March 2, 2020, to June 30, 2020 (n=286,205) and from November 1, 2020, to January 31, 2021 (n=1 655 022), in Russia.
RESULTS: At the early stage of the COVID-19 epidemic in Russia, two periods of the rise and fall in incidence were noted: March–August 2020 and September 2020–May 2021, using the Wald–Wolfowitz test. The median age of the patients with COVID-19 in the first and second periods were 50.0 [37–62] and 52.0 [39–64] years, respectively, and women accounted for 55.5 and 60.1% of the patients, respectively. The distributions of patients according to disease severity in the first and second periods were as follows: mild, 63.0 and 74.4%; moderate, 29.0 and 20.1%; severe, 4.9 and 3.5%; extremely severe, 3.1 and 2.1%, respectively. In the first and second periods, cases were dominated by patients aged 50–59 years (20.5%) and 60–69 years (20.5%), respectively. In both periods, the median duration from the onset of symptoms to diagnosis was 4 days, the median disease durations were 16.0 [12–21] and 13 [10–17], and the median duration of hospitalization were 15.0 [12–20] and 13.0 [10–18]. The hospitalization rates were 48.4 and 25.6% in the first and second periods; transfer rates to the ICU, 7.8 and 10.3%; and invasive mechanical ventilation rates, 5.6 and 7.7%, respectively. In both periods, the median age at death was 73 [66–82] years, with a higher proportion of men aged 30–39, 40–49, 50–59, and 60–69 years. The presence of one or more chronic diseases, as well as male sex, increased the likelihood of death (odds ratio = 10.2 and 1.3 in the first period; odds ratio = 16.0 and 1.6 in the second period).
CONCLUSIONS: In the early period of the COVID-19 epidemic in Russia, related to the spread of the wild strain of SARS-CoV-2 and genetically closely related variants, the manifestations of the epidemic process and clinical and epidemiological characteristics of patients varied. In the second period with higher incidence and mortality rates than the first period, the frequency of severe and extremely severe COVID-19 and the frequency and duration of hospitalizations decreased; however, the frequency of transfers into the intensive care unit and artificial lung ventilation slightly increased.
epidemiology / SARS-CoV-2 / incidence / hospitalization / mortality
| [1] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020;395(10223):496. doi: 10.1016/S0140-6736(20)30252-X |
| [2] |
Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, N 10223. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5 Erratum in: Lancet. 2020. Vol. 395, N 10223. P. 496. doi: 10.1016/S0140-6736(20)30252-X |
| [3] |
Archived. WHO Timeline — COVID-19. WHO [Internet]. Available from: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 |
| [4] |
Archived. WHO Timeline — COVID-19 // WHO [Internet]. Режим доступа: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19 |
| [5] |
Listings of WHO’s response to COVID-19. WHO [Internet]. Available from: https://www.who.int/news-room/detail/29-06-2020-covidtimeline |
| [6] |
Listings of WHO’s response to COVID-19 // WHO [Internet]. Режим доступа: https://www.who.int/news-room/detail/29-06-2020-covidtimeline |
| [7] |
Listings of WHO’s response to COVID-19 [Internet]. Available from: https://www.who.int/ru/news-room/detail/29-06-2020-covidtimeline (In Russ). |
| [8] |
Хронология действий ВОЗ по борьбе с COVID-19 [интернет]. Режим доступа: https://www.who.int/ru/news/item/29-06-2020-covidtimeline |
| [9] |
Naming the coronavirus disease (COVID-19) and the virus that causes it. WHO [Internet]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it |
| [10] |
Naming the coronavirus disease (COVID-19) and the virus that causes it // WHO [Internet]. Режим доступа: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it |
| [11] |
Karpova LS, Stolyarov KA, Popovtseva NM, Stolyarova TP, Danilenko DM. Comparison of the First Three Waves of the COVID-19 Pandemic in Russia in 2020–21. Epidemiology and Vaccinal Prevention. 2022;21(2):4–16. (In Russ). doi: 10.31631/2073-3046-2022-21-2-4-16 |
| [12] |
Карпова Л.С., Столяров К.А., Поповцева Н.М., Столярова Т.П., Даниленко Д.М. Сравнение первых трех волн пандемии COVID-19 в России (2020–2021 гг.) // Эпидемиология и Вакцинопрофилактика. 2022. Т. 21, № 2. С. 4–16. doi: 10.31631/2073-3046-2022-21-2-4-16 |
| [13] |
Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812–827.e19. doi: 10.1016/j.cell.2020.06.043 |
| [14] |
Korber B., Fischer W.M., Gnanakaran S., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus // Cell. 2020. Vol. 182, N 4. P. 812–827.e19. doi: 10.1016/j.cell.2020.06.043 |
| [15] |
Historical working definitions and primary actions for SARS-CoV-2 variants. WHO [Internet]. Available from: https://www.who.int/publications/m/item/historical-working-definitions-and-primary-actions-for-sars-cov-2-variants |
| [16] |
Historical working definitions and primary actions for SARS-CoV-2 variants // WHO [Internet]. Режим доступа: https://www.who.int/publications/m/item/historical-working-definitions-and-primary-actions-for-sars-cov-2-variants |
| [17] |
Ombajo LA, Mutono N, Sudi P, et al. Epidemiological and clinical characteristics of patients hospitalised with COVID-19 in Kenya: a multicentre cohort study. BMJ Open. 2022;12(5):e049949. doi: 10.1136/bmjopen-2021-049949 |
| [18] |
Ombajo L.A., Mutono N., Sudi P., et al. Epidemiological and clinical characteristics of patients hospitalised with COVID-19 in Kenya: a multicentre cohort study // BMJ Open. 2022. Vol. 12, N 5. P. e049949. doi: 10.1136/bmjopen-2021-049949 |
| [19] |
Nikpouraghdam M, Jalali Farahani A, Alishiri G, et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. J Clin Virol. 2020;127:104378. doi: 10.1016/j.jcv.2020.104378 |
| [20] |
Nikpouraghdam M., Jalali Farahani A., Alishiri G., et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study // J Clin Virol. 2020. Vol. 127. P. 104378. doi: 10.1016/j.jcv.2020.104378 |
| [21] |
Peckham H, de Gruijter NM, Raine C, et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020;11(1):6317. doi: 10.1038/s41467-020-19741-6 |
| [22] |
Peckham H., de Gruijter N.M., Raine C., et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission // Nat Commun. 2020. Vol. 11, N 1. P. 6317. doi: 10.1038/s41467-020-19741-6 |
| [23] |
Yanez ND, Weiss NS, Romand JA, Treggiari MM. COVID-19 mortality risk for older men and women. BMC Public Health. 2020;20(1):1742. doi: 10.1186/s12889-020-09826-8 |
| [24] |
Yanez N.D., Weiss N.S., Romand J.A., Treggiari M.M. COVID-19 mortality risk for older men and women // BMC Public Health. 2020. Vol. 20, N 1. P. 1742. doi: 10.1186/s12889-020-09826-8 |
| [25] |
Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020;81(2):e16–e25. doi: 10.1016/j.jinf.2020.04.021 |
| [26] |
Zheng Z., Peng F., Xu B., et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis // J Infect. 2020. Vol. 81, N 2. P. e16–e25. doi: 10.1016/j.jinf.2020.04.021 |
| [27] |
Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–1581. doi: 10.1001/jama.2020.5394 Erratum in: JAMA. 2021;325(20):2120. doi: 10.1001/jama.2021.5060 |
| [28] |
Grasselli G., Zangrillo A., Zanella A., et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy // JAMA. 2020. Vol. 323, N 16. P. 1574–1581. doi: 10.1001/jama.2020.5394 Erratum in: JAMA. 2021. Vol. 325, N 20. P. 2120. doi: 10.1001/jama.2021.5060 |
| [29] |
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017 |
| [30] |
Yang J., Zheng Y., Gou X., et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis // Int J Infect Dis. 2020. Vol. 94. P. 91–95. doi: 10.1016/j.ijid.2020.03.017 |
| [31] |
Xu JW, Liu JQ, Ke L, et al. Effective actions against the second wave of COVID-19: the front-line experience from China. Eur Rev Med Pharmacol Sci. 2020;24(23):11995–11997. doi: 10.26355/eurrev_202012_23986 |
| [32] |
Xu J.-W., Liu J.-Q., Ke L., et al. Effective actions against the second wave of COVID-19: the front-line experience from China // Eur Rev Med Pharmacol Sci. 2020. Vol. 24, N 23. P. 11995–11997. doi: 10.26355/eurrev_202012_23986 |
| [33] |
The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Weekly. 2020;2(8):113–122. doi: 10.46234/ccdcw2020.032 |
| [34] |
The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020 // China CDC Weekly. 2020. Vol. 2, N 8. P. 113–122. doi: 10.46234/ccdcw2020.032 |
| [35] |
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi: 10.1183/13993003.00547-2020 |
| [36] |
Guan W.J., Liang W.H., Zhao Y., et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis // Eur Respir J. 2020. Vol. 55, N 5. P. 2000547. doi: 10.1183/13993003.00547-2020 |
| [37] |
COVID-19 integrated surveillance data in Italy. EpiCentro [Internet]. Available from: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-dashboard |
| [38] |
COVID-19 integrated surveillance data in Italy // EpiCentro [Internet]. Режим доступа: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-dashboard |
| [39] |
Covid-19 — Folkhälsomyndigheten [Internet]. Available from: https://experience.arcgis.com/experience/09f821667ce64bf7be6f9f87457ed9aa (In Swedish). |
| [40] |
Covid-19 — Folkhälsomyndigheten [Internet]. Режим доступа: https://experience.arcgis.com/experience/09f821667ce64bf7be6f9f87457ed9aa |
| [41] |
COVID-19 WEEKLY EPIDEMIOLOGY BRIEF. National Institute for Communicable Diseases [Internet]. Available from: https://www.nicd.ac.za/wp-content/uploads/2020/07/NICD-Weekly-Epidemiological-Brief_-Week-ending-11-July-2020.-final-pdf.pdf |
| [42] |
COVID-19 WEEKLY EPIDEMIOLOGY BRIEF // National Institute for Communicable Diseases [Internet]. Режим доступа: https://www.nicd.ac.za/wp-content/uploads/2020/07/NICD-Weekly-Epidemiological-Brief_-Week-ending-11-July-2020.-final-pdf.pdf |
| [43] |
COVID-19: point épidémiologique du 17 juillet 2020. Sante publique France [Internet]. Available from: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-17-juillet-2020 (In French). |
| [44] |
COVID-19: point épidémiologique du 17 juillet 2020 // Sante publique France [Internet]. Режим доступа: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-17-juillet-2020 |
| [45] |
Akande OW, Elimian KO, Igumbor E, et al. Epidemiological comparison of the first and second waves of the COVID-19 pandemic in Nigeria, February 2020–April 2021. BMJ Glob Health. 2021;6(11):e007076. doi: 10.1136/bmjgh-2021-007076 |
| [46] |
Akande O.W., Elimian K.O., Igumbor E., et al. Epidemiological comparison of the first and second waves of the COVID-19 pandemic in Nigeria, February 2020–April 2021 // BMJ Glob Health. 2021. Vol. 6, N 11. P. e007076. doi: 10.1136/bmjgh-2021-007076 |
| [47] |
BOLETIM EPIDEMIOLÓGICO ESPECIAL Doença pelo Coronavírus COVID-19. Ministério da Saúde [Internet]. Available from: http://saude.gov.br/images/pdf/2020/July/15/Boletim-epidemiologico-COVID-22.pdf (In Portuguese). |
| [48] |
BOLETIM EPIDEMIOLÓGICO ESPECIAL Doença pelo Coronavírus COVID-19. Ministério da Saúde [Internet]. Режим доступа: http://saude.gov.br/images/pdf/2020/July/15/Boletim-epidemiologico-COVID-22.pdf |
| [49] |
Aleksanyan Y, Weinman JP. Women, men and COVID-19. Soc Sci Med. 2022;294:114698. doi: 10.1016/j.socscimed.2022.114698 |
| [50] |
Aleksanyan Y., Weinman J.P. Women, men and COVID-19 // Soc Sci Med. 2022. Vol. 294. P. 114698. doi: 10.1016/j.socscimed.2022.114698 |
| [51] |
Schlichthorst M, Sanci LA, Pirkis J, Spittal MJ, Hocking JS. Why do men go to the doctor? Socio-demographic and lifestyle factors associated with healthcare utilisation among a cohort of Australian men. BMC Public Health. 2016;16 Suppl. 3:1028. doi: 10.1186/s12889-016-3706-5 |
| [52] |
Schlichthorst M., Sanci L.A., Pirkis J., Spittal M.J., Hocking J.S. Why do men go to the doctor? Socio-demographic and lifestyle factors associated with healthcare utilisation among a cohort of Australian men // BMC Public Health. 2016. Vol. 16, Suppl. 3. P. 1028. doi: 10.1186/s12889-016-3706-5 |
| [53] |
Leong R, Lee TJ, Chen Z, Zhang C, Xu J. Global Temporal Patterns of Age Group and Sex Distributions of COVID-19. Infect Dis Rep. 2021;13(2):582–596. doi: 10.3390/idr13020054 |
| [54] |
Leong R., Lee T.J., Chen Z., Zhang C., Xu J. Global Temporal Patterns of Age Group and Sex Distributions of COVID-19 // Infect Dis Rep. 2021. Vol. 13, N 2. P. 582–596. doi: 10.3390/idr13020054 |
| [55] |
Yang C, Zhang S, Lu S, et al. All five COVID-19 outbreaks during epidemic period of 2020/2021 in China were instigated by asymptomatic or pre-symptomatic individuals. J Biosaf Biosecur. 2021;3(1):35–40. doi: 10.1016/j.jobb.2021.04.001 |
| [56] |
Yang C., Zhang S., Lu S., et al. All five COVID-19 outbreaks during epidemic period of 2020/2021 in China were instigated by asymptomatic or pre-symptomatic individuals // J Biosaf Biosecur. 2021. Vol. 3, N. 1. P. 35–40. doi: 10.1016/j.jobb.2021.04.001 |
| [57] |
He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675. doi: 10.1038/s41591-020-0869-5 |
| [58] |
He X., Lau E.H.Y., Wu P., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19 // Nat Med. 2020. Vol. 26, N 5. P. 672–675. doi: 10.1038/s41591-020-0869-5 |
| [59] |
Buttenschøn HN, Lynggaard V, Sandbøl SG, et al. Comparison of the clinical presentation across two waves of COVID-19: A retrospective cohort study. BMC Infect Dis. 2022;22(1):423. doi: 10.1186/s12879-022-07413-3 |
| [60] |
Buttenschøn H.N., Lynggaard V., Sandbøl S.G., et al. Comparison of the clinical presentation across two waves of COVID-19: A retrospective cohort study // BMC Infect Dis. 2022. Vol. 22, N 1. P. 423. doi: 10.1186/s12879-022-07413-3 |
| [61] |
Hoogenboom WS, Pham A, Anand H, et al. Clinical characteristics of the first and second COVID-19 waves in the Bronx, New York: A retrospective cohort study. Lancet Reg Health Am. 2021;3:100041. doi: 10.1016/j.lana.2021.100041 |
| [62] |
Hoogenboom W.S., Pham A., Anand H., et al. Clinical characteristics of the first and second COVID-19 waves in the Bronx, New York: A retrospective cohort study // Lancet Reg Health Am. 2021. Vol. 3. P. 100041. doi: 10.1016/j.lana.2021.100041 |
| [63] |
Goel I, Sharma S, Kashiramka S. Effects of the COVID-19 pandemic in India: An analysis of policy and technological interventions. Health Policy Technol. 2021;10(1):151–164. doi: 10.1016/j.hlpt.2020.12.001 |
| [64] |
Goel I., Sharma S., Kashiramka S. Effects of the COVID-19 pandemic in India: An analysis of policy and technological interventions // Health Policy Technol. 2021. Vol. 10, N 1. P. 151–164. doi: 10.1016/j.hlpt.2020.12.001 |
| [65] |
Matsunaga N, Hayakawa K, Asai Y, et al. Clinical characteristics of the first three waves of hospitalised patients with COVID-19 in Japan prior to the widespread use of vaccination: a nationwide observational study. Lancet Reg Health West Pac. 2022;22:100421. doi: 10.1016/j.lanwpc.2022.100421 |
| [66] |
Matsunaga N., Hayakawa K., Asai Y., et al. Clinical characteristics of the first three waves of hospitalised patients with COVID-19 in Japan prior to the widespread use of vaccination: a nationwide observational study // Lancet Reg Health West Pac. 2022. Vol. 22. P. 100421. doi: 10.1016/j.lanwpc.2022.100421 |
| [67] |
Smits RAL, Trompet S, van der Linden CMJ, et al. Characteristics and outcomes of older patients hospitalised for COVID-19 in the first and second wave of the pandemic in The Netherlands: the COVID-OLD study. Age Ageing. 2022;51(3):afac048. doi: 10.1093/ageing/afac048 |
| [68] |
Smits R.A.L., Trompet S., van der Linden C.M.J., et al. Characteristics and outcomes of older patients hospitalised for COVID-19 in the first and second wave of the pandemic in The Netherlands: the COVID-OLD study // Age Ageing. 2022. Vol. 51, N 3. P. afac048. doi: 10.1093/ageing/afac048 |
| [69] |
Amin R, Sohrabi MR, Zali AR, Hannani K. Five consecutive epidemiological waves of COVID-19: a population-based cross-sectional study on characteristics, policies, and health outcome. BMC Infect Dis. 2022;22(1):906. doi: 10.1186/s12879-022-07909-y |
| [70] |
Amin R., Sohrabi M.-R., Zali A.-R., Hannani K. Five consecutive epidemiological waves of COVID-19: a population-based cross-sectional study on characteristics, policies, and health outcome // BMC Infect Dis. 2022. Vol. 22, N 1. P. 906. doi: 10.1186/s12879-022-07909-y |
| [71] |
Bobik TV, Kostin NN, Skryabin GA, et al. COVID-19 in Russia: clinical and immunological features of the first-wave patients. Acta Naturae. 2021;13(1):102–115. (In Russ). doi: 10.32607/actanaturae.11374 |
| [72] |
Бобик Т.В., Костин Н.Н., Скрябин Г.А., и др. COVID-19 в России: клинические и иммунологические особенности пациентов первой волны // Acta Naturae. 2021. Т. 13, № 1. С. 102–115. doi: 10.32607/actanaturae.11374 |
| [73] |
Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine. 2020;8(1):e35. |
| [74] |
Emami A., Javanmardi F., Pirbonyeh N., Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis // Archives of Academic Emergency Medicine. 2020. Vol. 8, N 1. P. e35. |
| [75] |
Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 – COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458–464. doi: 10.15585/mmwr.mm6915e3 |
| [76] |
Garg S., Kim L., Whitaker M., et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020 // MMWR Morb Mortal Wkly Rep. 2020. Vol. 69, N 15. P. 458–464. doi: 10.15585/mmwr.mm6915e3 |
| [77] |
Demography. Federal State Statistics Service [Internet]. Available from: https://rosstat.gov.ru/folder/12781 (In Russ). |
| [78] |
Демография // Федеральная служба государственной статистики [интернет]. Режим доступа: https://rosstat.gov.ru/folder/12781 |
| [79] |
Shestakova MV, Vikulova OK, Isakov MА, Dedov II. Diabetes and COVID-19: analysis of the clinical outcomes according to the data of the russian diabetes registry. Problems of Endocrinology. 2020;66(1):35–46. (In Russ). doi: 10.14341/probl12458 |
| [80] |
Шестакова М.В., Викулова О.К., Исаков М.А., Дедов И.И. Сахарный диабет и COVID-19: анализ клинических исходов по данным регистра сахарного диабета Российской Федерации // Проблемы Эндокринологии. 2020. Т. 66, № 1. С. 35–46. doi: 10.14341/probl12458 |
| [81] |
Jacobsen H, Klein SL. Sex Differences in Immunity to Viral Infections. Frontiers in Immunology. 2021;12:720952. doi: 10.3389/fimmu.2021.720952 |
| [82] |
Jacobsen H., Klein S.L. Sex Differences in Immunity to Viral Infections // Frontiers in Immunology. 2021. Vol. 12. P. 720952. doi: 10.3389/fimmu.2021.720952 |
| [83] |
Briko NI, Korshunov VA, Krasnova SV, et al. Clinical and epidemiological characteristics of hospitalized patients with COVID-19 during different pandemic periods in Moscow. Journal of microbiology, epidemiology and immunobiology 2022;99(3):287–299. (In Russ.) doi: 10.36233/0372-9311-272 |
| [84] |
Брико Н.И., Коршунов В.А., Краснова С.В., и др. Клинико-эпидемиологические особенности пациентов, госпитализированных с COVID-19 в различные периоды пандемии в Москве // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 3. С. 287–299. doi: 10.36233/0372-9311-272 |
Eco-vector
/
| 〈 |
|
〉 |