Lethal case of lung gangrene against the background of viral-bacterial pneumonia (COVID-19 and Fusobacteria)
Olga V. Alpidovskaya
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (6) : 407 -412.
Lethal case of lung gangrene against the background of viral-bacterial pneumonia (COVID-19 and Fusobacteria)
The respiratory system is the main target of COVID-19 infection spread by the SARS-CoV-2 virus. This study presents a case of viral–bacterial pneumonia caused by SARS-CoV-2 and Fusobacteria complicated by the development of gangrene in the lower lobe of the right lung with abscess formation. Accompanied by an ambulance team for emergency reasons, the patient was admitted for inpatient treatment with complaints of pain when coughing, dyspnea, cough with mucopurulent sputum, and fever up to 39.6°С. Chest computed tomography revealed signs of viral–bacterial pneumonia. Infiltration was determined in the lower lobe of the right lung, against which a cavity with melting lung tissue was observed. A virological test of throat and nasal swabs detected SARS-CoV-2 coronavirus RNA. Despite treatment, the patient died. Autopsy revealed signs of viral–bacterial pneumonia, a decaying cavity with purulent content, and diffuse destructive changes with hemorrhages. The cause of death of the patient was COVID-19, which caused bilateral viral–bacterial pneumonia complicated by the development of gangrene in the lower lobe of the right lung with abscess formation.
COVID-19 / viral–bacterial pneumonia / Fusobacteria / lung gangrene / pulmonary edema / respiratory failure / case report
| [1] |
Curry CA, Fishman EK, Buckley JA. Pulmonary gangrene: radiologic and pathologic correlation. South Med J. 1998;91(10):957–960. |
| [2] |
Curry C.A., Fishman E.K., Buckley J.A. Pulmonary gangrene: radiologic and pathologic correlation // South Med J. 1998. Vol. 91, N 10. P. 957–960. |
| [3] |
Capov I, Wechsler J, Pavlik M, et al. Rare incidence of pulmonary gangrene-algorithm of the treatment. Magy Seb. 2006;59(1):32–35. |
| [4] |
Capov I., Wechsler J., Pavlik M., et al. Rare incidence of pulmonary gangrene-algorithm of the treatment // Magy Seb. 2006. Vol. 59, N 1. P. 32–35. |
| [5] |
Kothari PR, Jiwane A, Kulkarni B. Pulmonary gangrene complicating bacterial pneumonia. Indian Pediatr. 2003; 40(8):784–785. |
| [6] |
Kothari P.R., Jiwane A., Kulkarni B. Pulmonary gangrene complicating bacterial pneumonia // Indian Pediatr. 2003. Vol. 40, N 8. P. 784–785. |
| [7] |
Kalfa N, Allal H, Lopez M, et al. An early thoracoscopic approach in necrotizing pneumonia in children: a report of three cases. J. Laparoendosc. Adv. Surg. Tech. A. 2005;15(1):18–22. |
| [8] |
Kalfa N., Allal H., Lopez M., et al. An early thoracoscopic approach in necrotizing pneumonia in children: a report of three cases // J. Laparoendosc. Adv. Surg. Tech. A. 2005. Vol. 15, N 1. P. 18–22. |
| [9] |
Kelly MV, Kyger ER, Miller WC. Postoperative lobar torsion and gangrene. Thorax. 1977;32:501–504. |
| [10] |
Kelly M.V., Kyger E.R., Miller W.C. Postoperative lobar torsion and gangrene // Thorax. 1977. Vol. 32. P. 501–504. |
| [11] |
Haraszti A, Sovari M. Fatal pulmonary gangrene caused by inhalation of fuel oil. Orv Hetil. 1968;21(16):851–854. |
| [12] |
Haraszti A., Sovari M. Fatal pulmonary gangrene caused by inhalation of fuel oil // Orv Hetil. 1968. Vol. 21, N 16. P. 851–854. |
| [13] |
Vorobeva OV. Changes in organs in COVID-19 infection with septicopyemia. Profilakticheskaya meditsina. 2021;24(10):89-93. (In Russ). doi: 10.17116/profmed20212410189 |
| [14] |
Воробьева О.В. Изменения в органах при инфицировании COVID-19 с развитием септикопиемии // Профилактическая медицина. 2021. Т. 24, № 10. С. 89–93. doi: 10.17116/profmed20212410189 |
| [15] |
Vorobeva OV, Lastochkin AV. Organ-specific pathomorphological changes during COVID-19. Russian Journal of Infection and Immunity. 2020;10(3):587–590. (In Russ). doi: 10.15789/2220-7619-PCI-1483 |
| [16] |
Воробьева О.В., Ласточкин А.В. Патоморфологические изменения в органах при COVID-19 // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 587–590. doi: 10.15789/2220-7619-PCI-1483 |
| [17] |
Abdelhadi A, Kassem A. Candida Pneumonia with Lung Abscess as a Complication of Severe COVID-19 Pneumonia. Int Med Case Rep J. 2021;14:853–861. doi: 10.2147/IMCRJ.S342054 |
| [18] |
Abdelhadi A., Kassem A. Candida Pneumonia with Lung Abscess as a Complication of Severe COVID-19 Pneumonia // Int Med Case Rep J. 2021. Vol. 14. P. 853–861. doi: 10.2147/IMCRJ.S342054 |
| [19] |
Zamani N, Aloosh O, Ahsant S, et al. Lung abscess as a complication of COVID-19 infection, a case report. Clin Case Rep. 2021;9(3):1130–1134. doi: 10.1002/ccr3.3686 |
| [20] |
Zamani N., Aloosh O., Ahsant S., et al. Lung abscess as a complication of COVID-19 infection, a case report // Clin Case Rep. 2021. Vol. 9, N 3. P. 1130–1134. doi: 10.1002/ccr3.3686 |
| [21] |
Renaud-Picard B, Gallais F, Riou M, et al. Delayed pulmonary abscess following COVID-19 pneumonia: A case report. Respir Med Res. 2020;78:100776. doi: 10.1016/j.resmer.2020.100776 |
| [22] |
Renaud-Picard B., Gallais F., Riou M., et al. Delayed pulmonary abscess following COVID-19 pneumonia: A case report // Respir Med Res. 2020. Vol. 78. P. 100776. doi: 10.1016/j.resmer.2020.100776 |
| [23] |
Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2009;15(8):796–802. doi: 10.1111/j.1469-0691.2009.02788.x |
| [24] |
Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M.; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry // Clin Microbiol Infect. 2009. Vol. 15, N 8. P. 796–802. doi: 10.1111/j.1469-0691.2009.02788.x |
| [25] |
Wybo I, Soetens O, De Bel A, et al. Species identification of clinical Prevotella isolates by matrix-assisted laser-desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(4): 1415–1418. doi: 10.1128/JCM.06326-11 |
| [26] |
Wybo I., Soetens O., De Bel A., et al. Species identification of clinical Prevotella isolates by matrix-assisted laser-desorption ionization-time of flight mass spectrometry // J Clin Microbiol. 2012. Vol. 50, N 4. P. 1415–1418. doi: 10.1128/JCM.06326-11 |
| [27] |
Shilnikova II, Dmitrieva NV. Assessment of sensitivity to antibiotics of anaerobic pathogens Bacteroides, Prevotella and Fusobacterium isolated from cancer patients. Siberian Journal of Oncology. 2015;(5):37–43. |
| [28] |
Шильникова И.И., Дмитриева Н.В. Оценка чувствительности к антибиотикам анаэробных возбудителей Bacteroides, Prevotella и Fusobacterium, выделенных от онкологических больных // Сибирский онкологический журнал. 2015. № 5. С. 37–43. |
| [29] |
Rennie RP, Turnbull L, Brosnikoff C, Cloke J. First comprehensive evaluation of the M.I.C. evaluator device compared to Etest and CLSI reference dilution methods for antimicrobial susceptibility testing of clinical strains of anaerobes and other fastidious bacterial species. J Clin Microbiol. 2012;50(4):1153-1157. doi: 10.1128/JCM.05397-11 |
| [30] |
Rennie R.P., Turnbull L., Brosnikoff C., Cloke J. First comprehensive evaluation of the M.I.C. evaluator device compared to Etest and CLSI reference dilution methods for antimicrobial susceptibility testing of clinical strains of anaerobes and other fastidious bacterial species // J Clin Microbiol. 2012. Vol. 50, N 4. P. 1153–1157. doi: 10.1128/JCM.05397-11 |
Eco-vector
/
| 〈 |
|
〉 |