Features of the immune response in early period of ixodid tick-borne borreliosis
Kirill V. Samoylov , Daniil P. Koval , Ekaterina N. Ilyinskikh , Evgenia N. Filatova
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (5) : 319 -330.
Features of the immune response in early period of ixodid tick-borne borreliosis
Lyme borreliosis is a group of transmissible infectious diseases that are similar in etiology, but diverse in clinical manifestations. The development of Lyme disease symptoms is due not only to the activity of the pathogen itself, but also to the result of its interaction with immune system of macroorganism. The first line of defense, represented by a variety of cellular and humoral components of innate immunity, is most rapidly involved in immune response, and it is it that seeks to limit dissemination of the causative agent from the initial site of infection. However, a wide range of protective surface proteins of Borrelia and a number of other structures aimed at avoiding immune mechanisms prevent the destruction of the pathogen. Not the last place in this dynamic process is occupied by ixodid ticks themselves, since the secret of their salivary glands has an inhibitory effect on a number of cells and complement system. In parallel with innate immunity, adaptive immune response factors are activated, serving as a second line of defense. The synthesis of specific antibodies in the early period of Lyme disease has its own ambiguous features, but this does not exclude their importance in fight against borreliosis infection. To date, the issues of interaction with dendritic cells and cytotoxic T-lymphocytes remain less studied. Research of all aspects, including little-studied ones, is extremely important for both practical healthcare and fundamental medicine.
ixodid tick-borne borreliosis / Lyme disease / innate immune response / adaptive immune response / immunity
| [1] |
Cerar T, Strle F, Stupica D, et al. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States. Emerg Infect Dis. 2016;22(5):818–827. doi:10.3201/eid2205.151806 |
| [2] |
Cerar T., Strle F., Stupica D., et al. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States // Emerg Infect Dis. 2016. Vol. 22, N 5. P. 818–827. doi:10.3201/eid2205.151806 |
| [3] |
Marques AR, Strle F, Wormser GP. Comparison of Lyme Disease in the United States and Europe. Emerg Infect Dis. 2021;27(8): 2017–2024. doi:10.3201/eid2708.204763 |
| [4] |
Marques A.R., Strle F., Wormser G.P. Comparison of Lyme Disease in the United States and Europe // Emerg Infect Dis. 2021. Vol. 27, N 8. P. 2017–2024. doi:10.3201/eid2708.204763 |
| [5] |
Rudakova SA, Teslova OE, Kaneshova NE, et al. Genospecies Diversity of Borrelia in Ixodes Ticks of the West Siberia. Problems of Particularly Dangerous Infections. 2019;(4):92–96. (In Russ). doi: 10.21055/0370-1069-2019-4-92-96 |
| [6] |
Рудакова С.А., Теслова О.Е., Канешова Н.Е., и др. Геновидовое разнообразие боррелий в иксодовых клещах на территории юга Западной Сибири // Проблемы особо опасных инфекций. 2019. № 4. С. 92–96. doi: 10.21055/0370-1069-2019-4-92-96 |
| [7] |
Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 2016;7(5):992–1003. doi: 10.1016/j.ttbdis.2016.05.006 |
| [8] |
Gray J.S., Kahl O., Lane R.S., Levin M.L., Tsao J.I. Diapause in ticks of the medically important Ixodes ricinus species complex // Ticks Tick Borne Dis. 2016. Vol. 7, N 5. P. 992–1003. doi: 10.1016/j.ttbdis.2016.05.006 |
| [9] |
Titkov AV, Platonov AE, Stukolova OA, et al. Epidemiological features of ixodes tick-borne borelioses in the krasnoyarsk territory in the context of searching for the cases of infection caused by Borrelia miyamotoi. Journal of Microbiology, Epidemiology and Immunobiology. 2018;(3):10–18 (In Russ). doi: 10.36233/0372-9311-2018-3-10-18 |
| [10] |
Титков А.В., Платонов А.Е., Стуколова О.А., и др. Эпидемиологические особенности иксодовых клещевых боррелиозов в Красноярском крае в контексте изучения распространённости инфекции, вызываемой Borrelia miyamotoi // Журнал микробиологии, эпидемиологии и иммунобиологии. 2018. № 3. С. 10–18. doi: 10.36233/0372-9311-2018-3-10-18 |
| [11] |
Murzabaeva RT, Sharifullina LD, Abrashina NA, Lukmanova AH. Clinical and immunological characteristics of erythema and non-erythema forms of ixodic tick-borne borreliosis. Bashkortostan Medical Journal. 2021;16(3):21–26. (In Russ). |
| [12] |
Мурзабаева Р.Т., Шарифуллина Л.Д., Абрашина Н.А., Лукманова А.Х. Клинико-иммунологическая характеристика эритемной и безэритемной форм иксодового клещевого боррелиоза // Медицинский вестник Башкортостана. 2021. Т. 16, № 3. С. 21–26. |
| [13] |
Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. The Lancet. 2012;379(9814):461–473. doi: 10.1016/S0140-6736(11)60103-7 |
| [14] |
Stanek G., Wormser G.P., Gray J., Strle F. Lyme borreliosis // The Lancet. 2012. Vol. 379, N 9814. P. 461–473. doi: 10.1016/S0140-6736(11)60103-7 |
| [15] |
Trevisan G, Bonin S, Ruscio M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods. Front Med. 2020;7:265. doi: 10.3389/fmed.2020.00265 |
| [16] |
Trevisan G., Bonin S., Ruscio M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods // Front Med. 2020. Vol. 7. P. 265. doi: 10.3389/fmed.2020.00265 |
| [17] |
Maksimyan S, Syed MS, Soti V. Post-Treatment Lyme Disease Syndrome: Need for Diagnosis and Treatment. Cureus. 2021; 13(10):e18703. doi: 10.7759/cureus.18703 |
| [18] |
Maksimyan S., Syed M.S., Soti V. Post-Treatment Lyme Disease Syndrome: Need for Diagnosis and Treatment // Cureus. 2021. Vol. 13, N 10. P. e18703. doi: 10.7759/cureus.18703 |
| [19] |
Sertour N, Cotté V, Garnier M, et al. Infection Kinetics and Tropism of Borrelia burgdorferi sensu lato in Mouse After Natural (via Ticks) or Artificial (Needle) Infection Depends on the Bacterial Strain. Front Microbiol. 2018;9:1722. doi: 10.3389/fmicb.2018.01722 |
| [20] |
Sertour N., Cotté V., Garnier M., et al. Infection Kinetics and Tropism of Borrelia burgdorferi sensu lato in Mouse After Natural (via Ticks) or Artificial (Needle) Infection Depends on the Bacterial Strain // Front Microbiol. 2018. Vol. 9. P. 1722. doi: 10.3389/fmicb.2018.01722 |
| [21] |
Strobl J, Mündler V, Müller S, et al. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest. 2022;132(21):e161188. doi: 10.1172/JCI161188 |
| [22] |
Strobl J., Mündler V., Müller S., et al. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission // J Clin Invest. 2022. Vol. 132, N 21. P. e161188. doi: 10.1172/JCI161188 |
| [23] |
Tuominen-Gustafsson H, Penttinen M, Hytönen J, Viljanen MK. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol. 2006;6:92. doi: 10.1186/1471-2180-6-92 |
| [24] |
Tuominen-Gustafsson H., Penttinen M., Hytönen J., Viljanen M.K. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils // BMC Microbiol. 2006. Vol. 6. P. 92. doi: 10.1186/1471-2180-6-92 |
| [25] |
Bernard Q, Smith AA, Yang X, et al. Plasticity in early immune evasion strategies of a bacterial pathogen. Proc Natl Acad Sci U S A. 2018;115(16):E3788–E3797. doi: 10.1073/pnas.1718595115 |
| [26] |
Bernard Q., Smith A.A., Yang X., et al. Plasticity in early immune evasion strategies of a bacterial pathogen // Proc Natl Acad Sci U S A. 2018. Vol. 115, N 16. P. E3788–E3797 doi: 10.1073/pnas.1718595115 |
| [27] |
Muldur S, Ellett F, Marand AL, et al. Microfluidic Assays for Probing Neutrophil-Borrelia Interactions in Blood During Lyme Disease. Cells Tissues Organs. 2022;211(3):313–323. doi: 10.1159/000513118 |
| [28] |
Muldur S., Ellett F., Marand A.L., et al. Microfluidic Assays for Probing Neutrophil-Borrelia Interactions in Blood During Lyme Disease // Cells Tissues Organs. 2022. Vol. 211, N 3. P. 313–323. doi: 10.1159/000513118 |
| [29] |
Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res. 2016;(9):91–102. doi: 10.2147/JIR.S104790 |
| [30] |
Rahman S., Shering M., Ogden N.H., Lindsay R., Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease // J Inflamm Res. 2016. N 9. P. 91–102. doi: 10.2147/JIR.S104790 |
| [31] |
Hartiala P, Hytönen J, Suhonen J, et al. Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect. 2008;10(1): 60–68. doi: 10.1016/j.micinf.2007.10.004 |
| [32] |
Hartiala P., Hytönen J., Suhonen J., et al. Borrelia burgdorferi inhibits human neutrophil functions // Microbes Infect. 2008. Vol. 10, N 1. P. 60–68. doi: 10.1016/j.micinf.2007.10.004 |
| [33] |
Vorobjeva NV, Chernyak BV. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Mosc). 2020; 85(10):1178–1190. doi: 10.1134/S0006297920100065 |
| [34] |
Vorobjeva N.V., Chernyak B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology // Biochemistry (Mosc). 2020. Vol. 85, N 10. P. 1178–1190. doi: 10.1134/S0006297920100065 |
| [35] |
Appelgren D, Enocsson H, Skogman BH, et al. Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System Infections. Cells. 2019;9(1):43. doi: 10.3390/cells9010043 |
| [36] |
Appelgren D., Enocsson H., Skogman B.H., et al. Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System Infections // Cells. 2019. Vol. 9, N 1. P. 43. doi: 10.3390/cells9010043 |
| [37] |
O’Brien XM, Biron BM, Reichner JS. Consequences of extracellular trap formation in sepsis. Curr Opin Hematol. 2017;24(1):66–71. doi: 10.1097/MOH.0000000000000303 |
| [38] |
O’Brien X.M., Biron B.M., Reichner J.S. Consequences of extracellular trap formation in sepsis // Curr Opin Hematol. 2017. Vol. 24, N 1. P. 66–71. doi: 10.1097/MOH.0000000000000303 |
| [39] |
Hidano A, Konnai S, Yamada S, et al. Suppressive effects of neutrophil by Salp16-like salivary gland proteins from Ixodes persulcatus Schulze tick. Insect Mol Biol. 2014;23(4):466–474. doi: 10.1111/imb.12101 |
| [40] |
Hidano A., Konnai S., Yamada S., et al. Suppressive effects of neutrophil by Salp16-like salivary gland proteins from Ixodes persulcatus Schulze tick // Insect Mol Biol. 2014. Vol. 23, N 4. P. 466–474. doi: 10.1111/imb.12101 |
| [41] |
Beaufays J, Adam B, Menten-Dedoyart C, et al. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One. 2008;3(12):e3987. doi: 10.1371/journal.pone.0003987 |
| [42] |
Beaufays J., Adam B., Menten-Dedoyart C., et al. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function // PLoS One. 2008. Vol. 3, N 12. P. e3987. doi: 10.1371/journal.pone.0003987 |
| [43] |
Menten-Dedoyart C, Faccinetto C, Golovchenko M, et al. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva. J Immunol. 2012;189(11):5393–5401. doi: 10.4049/jimmunol.1103771 |
| [44] |
Menten-Dedoyart C., Faccinetto C., Golovchenko M., et al. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva // J Immunol. 2012. Vol. 189, N 11. P. 5393–5401. doi: 10.4049/jimmunol.1103771 |
| [45] |
Carreras-González A, Barriales D, Palacios A, et al. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions. PLoS Pathog. 2019;15(11):e1008163. doi: 10.1371/journal.ppat.1008163 |
| [46] |
Carreras-González A., Barriales D., Palacios A., et al. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions // PLoS Pathog. 2019. Vol. 15, N 11. P. e1008163. doi: 10.1371/journal.ppat.1008163 |
| [47] |
Sugiyama K, Muroi M, Kinoshita M, et al. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J Toxicol Sci. 2016;41(2):273–279. doi: 10.2131/jts.41.273 |
| [48] |
Sugiyama K., Muroi M., Kinoshita M., et al. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol // J Toxicol Sci. 2016. Vol. 41, N 2. P. 273–279. doi: 10.2131/jts.41.273 |
| [49] |
Hawley KL, Olson CM Jr, Iglesias-Pedraz JM, et al. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2012;109(4):1228–1232. doi: 10.1073/pnas.1112078109 |
| [50] |
Hawley K.L., Olson C.M. Jr, Iglesias-Pedraz J.M., et al. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 4. P. 1228–1232. doi: 10.1073/pnas.1112078109 |
| [51] |
Benjamin SJ, Hawley KL, Vera-Licona P, et al. Macrophage mediated recognition and clearance of Borrelia burgdorferi elicits MyD88-dependent and -independent phagosomal signals that contribute to phagocytosis and inflammation. BMC Immunol. 2021;22(1):32. doi: 10.1186/s12865-021-00418-8 |
| [52] |
Benjamin S.J., Hawley K.L., Vera-Licona P., et al. Macrophage mediated recognition and clearance of Borrelia burgdorferi elicits MyD88-dependent and -independent phagosomal signals that contribute to phagocytosis and inflammation // BMC Immunol. 2021. Vol. 22, N 1. P. 32. doi: 10.1186/s12865-021-00418-8 |
| [53] |
Naj X, Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages. Cell Rep. 2015;12(11): 1816–1830. doi: 10.1016/j.celrep.2015.08.027 |
| [54] |
Naj X., Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages // Cell Rep. 2015. Vol. 12, N 11. P. 1816–1830. doi: 10.1016/j.celrep.2015.08.027 |
| [55] |
Chung Y, Zhang N, Wooten RM. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells [published correction appears in PLoS One. 2014;9(1). doi: 10.1371/annotation/2ce59bc4-fcf0-498f-86f0-376432428bf4] [published correction appears in PLoS One. 2014;9(1). doi: 10.1371/annotation/680090aa-3e1b-4135-94d6-8082c09180d4]. PLoS One. 2013;8(12):e84980. doi: 10.1371/journal.pone.0084980 |
| [56] |
Chung Y., Zhang N., Wooten R.M. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells // PLoS One. 2013. Vol. 8, N 12. Corrected and republished from: PLoS One. 2014. Vol. 9, N 1. P. e84980. doi: 10.1371/annotation/680090aa-3e1b-4135-94d6-8082c09180d4 |
| [57] |
Sal MS, Li C, Motalab MA, et al. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J Bacteriol. 2008;190(6):1912–1921. doi: 10.1128/JB.01421-07 |
| [58] |
Sal M.S., Li C., Motalab M.A., et al. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure // J Bacteriol. 2008. Vol. 190, N 6. P. 1912–1921. doi: 10.1128/JB.01421-07 |
| [59] |
Van den Bos E, Walbaum S, Horsthemke M, Bachg AC, Hanley PJ. Time-lapse Imaging of Mouse Macrophage Chemotaxis. J Vis Exp. 2020;(158):10.3791/60750. doi: 10.3791/60750 |
| [60] |
Van den Bos E., Walbaum S., Horsthemke M., Bachg A.C., Hanley P.J. Time-lapse Imaging of Mouse Macrophage Chemotaxis // J Vis Exp. 2020. N 158. P. 10.3791/60750. doi: 10.3791/60750 |
| [61] |
Guo Z, Zhao N, Chung TD, et al. Visualization of the Dynamics of Invasion and Intravasation of the Bacterium That Causes Lyme Disease in a Tissue Engineered Dermal Microvessel Model. Adv Sci (Weinh). 2022;9(35):e2204395. doi: 10.1002/advs.202204395 |
| [62] |
Guo Z., Zhao N., Chung T.D., et al. Visualization of the Dynamics of Invasion and Intravasation of the Bacterium That Causes Lyme Disease in a Tissue Engineered Dermal Microvessel Model // Adv Sci (Weinh). 2022. Vol. 9, N 35. P. e2204395. doi: 10.1002/advs.202204395 |
| [63] |
Klose M, Scheungrab M, Luckner M, Wanner G, Linder S. FIB-SEM-based analysis of Borrelia intracellular processing by human macrophages. J Cell Sci. 2021;134(5):jcs252320. doi: 10.1242/jcs.252320 |
| [64] |
Klose M., Scheungrab M., Luckner M., Wanner G., Linder S. FIB-SEM-based analysis of Borrelia intracellular processing by human macrophages // J Cell Sci. 2021. Vol. 134, N 5. P. jcs252320. doi: 10.1242/jcs.252320 |
| [65] |
Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors. 2013;6(1):261. doi: 10.1186/1756-3305-6-261 |
| [66] |
Poole N.M., Mamidanna G., Smith R.A., Coons L.B., Cole J.A. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile // Parasit Vectors. 2013. Vol. 6, N 1. P. 261. doi: 10.1186/1756-3305-6-261 |
| [67] |
Hourcade DE, Akk AM, Mitchell LM, et al. Anti-complement activity of the Ixodes scapularis salivary protein Salp20. Mol Immunol. 2016;(69):62–69. doi: 10.1016/j.molimm.2015.11.008 |
| [68] |
Hourcade D.E., Akk A.M., Mitchell L.M., et al. Anti-complement activity of the Ixodes scapularis salivary protein Salp20 // Mol Immunol. 2016. N 69. P. 62–69. doi: 10.1016/j.molimm.2015.11.008 |
| [69] |
Mason LM, Veerman CC, Geijtenbeek TB, Hovius JW. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol. 2014;30(2):95–103. doi: 10.1016/j.pt.2013.12.003 |
| [70] |
Mason L.M., Veerman C.C., Geijtenbeek T.B., Hovius J.W. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions // Trends Parasitol. 2014. Vol. 30, N 2. P. 95–103. doi: 10.1016/j.pt.2013.12.003 |
| [71] |
Grishchenko EA. Skin dendritic cells. Allergologiâ i immunologiâ v pediatrii. 2016;44(1):20–33. (In Russ). doi: 10.24411/2500-1175-2016-00004 |
| [72] |
Грищенко Е.А. Дендритные клетки кожи // Аллергология и иммунология в педиатрии. 2016. Т. 44, № 1. С. 20–33. doi: 10.24411/2500-1175-2016-00004 |
| [73] |
Gutierrez-Hoffmann MG, O’Meally RN, Cole RN, et al. Borrelia burgdorferi-Induced Changes in the Class II Self-Immunopeptidome Displayed on HLA-DR Molecules Expressed by Dendritic Cells. Front Med (Lausanne). 2020;(7):568. doi: 10.3389/fmed.2020.00568 |
| [74] |
Gutierrez-Hoffmann M.G., O’Meally R.N., Cole R.N., et al. Borrelia burgdorferi-Induced Changes in the Class II Self-Immunopeptidome Displayed on HLA-DR Molecules Expressed by Dendritic Cells // Front Med (Lausanne). 2020. N 7. P. 568. doi: 10.3389/fmed.2020.00568 |
| [75] |
Casasola-LaMacchia A, Ritorto MS, Seward RJ, et al. Human leukocyte antigen class II quantification by targeted mass spectrometry in dendritic-like cell lines and monocyte-derived dendritic cells. Sci Rep. 2021;11(1):1028. doi: 10.1038/s41598-020-77024-y |
| [76] |
Casasola-LaMacchia A., Ritorto M.S., Seward R.J., et al. Human leukocyte antigen class II quantification by targeted mass spectrometry in dendritic-like cell lines and monocyte-derived dendritic cells // Sci Rep. 2021. Vol. 11, N 1. P. 1028. doi: 10.1038/s41598-020-77024-y |
| [77] |
Mason LMK, Hovius JWR. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi. Methods Mol Biol. 2018;1690:291–299. doi: 10.1007/978-1-4939-7383-5_21 |
| [78] |
Mason L.M.K., Hovius J.W.R. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi // Methods Mol Biol. 2018. N 1690. P. 291–299. doi: 10.1007/978-1-4939-7383-5_21 |
| [79] |
Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol. 2021;147(5):1549–1560. doi: 10.1016/j.jaci.2021.03.009 |
| [80] |
Ghaedi M., Takei F. Innate lymphoid cell development // J Allergy Clin Immunol. 2021. Vol. 147, N 5. P. 1549–1560. doi: 10.1016/j.jaci.2021.03.009 |
| [81] |
Olson CM Jr, Bates TC, Izadi H, et al. Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J Immunol. 2009;182(6):3728–3734. doi: 10.4049/jimmunol.0804111 |
| [82] |
Olson C.M. Jr., Bates T.C., Izadi H., et al. Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis // J Immunol. 2009. Vol. 182, N 6. P. 3728–3734. doi: 10.4049/jimmunol.0804111 |
| [83] |
Oosting M, Brouwer M, Vrijmoeth HD, et al. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells. Cytokine. 2022;(155):155895. doi: 10.1016/j.cyto.2022.155895 |
| [84] |
Oosting M., Brouwer M., Vrijmoeth H.D., et al. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells // Cytokine. 2022. N 155. P. 155895 doi: 10.1016/j.cyto.2022.155895 |
| [85] |
Van de Schoor FR, Vrijmoeth HD, Brouwer MAE, et al. Borrelia burgdorferi Is a Poor Inducer of Gamma Interferon: Amplification Induced by Interleukin-12. Infect Immun. 2022;90(3):e0055821. doi: 10.1128/iai.00558-21 |
| [86] |
Van de Schoor F.R., Vrijmoeth H.D., Brouwer M.A.E., et al. Borrelia burgdorferi Is a Poor Inducer of Gamma Interferon: Amplification Induced by Interleukin-12 // Infect Immun. 2022. Vol. 90, N 3. P. e0055821. doi: 10.1128/iai.00558-21 |
| [87] |
Zhi H, Xie J, Skare JT. The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection. Front Immunol. 2018;9:959. doi: 10.3389/fimmu.2018.00959 |
| [88] |
Zhi H., Xie J., Skare J.T. The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection // Front Immunol. 2018. Vol. 9. P. 959. doi: 10.3389/fimmu.2018.00959 |
| [89] |
Garcia BL, Zhi H, Wager B, Höök M, Skare JT. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathog. 2016;12(1):e1005404. doi: 10.1371/journal.ppat.1005404 |
| [90] |
Garcia B.L., Zhi H., Wager B., Höök M., Skare J.T. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex // PLoS Pathog. 2016. Vol. 12, N 1. P. e1005404. doi: 10.1371/journal.ppat.1005404 |
| [91] |
Shakhidzhanov SS, Filippova AE, Butilin AA, Ataullakhanov FI. A modern view on the complement system. Pediatric Hematology/Oncology and Immunopathology. 2019;18(3):130–144. (In Russ). doi: 10.24287/1726-1708-2019-18-3-130-144 |
| [92] |
Шахиджанов С.С., Филиппова А.Е., Бутылин А.А., Атауллаханов Ф.И. Cовременное представление о системе комплемента // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019. Т. 18, № 3. С. 130–144. doi: 10.24287/1726-1708-2019-18-3-130-144 |
| [93] |
Wagemakers A, Coumou J, Schuijt TJ, et al. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement. Vector Borne Zoonotic Dis. 2016;16(4):223–228. doi: 10.1089/vbz.2015.1901 |
| [94] |
Wagemakers A., Coumou J., Schuijt T.J., et al. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement // Vector Borne Zoonotic Dis. 2016. Vol. 16, N 4. P. 223–228. doi: 10.1089/vbz.2015.1901 |
| [95] |
Caine JA, Lin YP, Kessler JR, et al. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival [published correction appears in Cell Microbiol. 2021;23(1)]. Cell Microbiol. 2017;19(12): e12786. doi: 10.1111/cmi.12786 |
| [96] |
Caine J.A., Lin Y.P., Kessler J.R., et al. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival // Cell Microbiol. 2017. Vol. 19, N 12. P. e12786. Corrected and republished from: Cell Microbiol. 2021. Vol. 23, N 1. doi: 10.1111/cmi.12786 |
| [97] |
Sajanti EM, Gröndahl-Yli-Hannuksela K, Kauko T, He Q, Hytönen J. Lyme Borreliosis and Deficient Mannose-Binding Lectin Pathway of Complement. J Immunol. 2015;194(1):358–363. doi: 10.4049/jimmunol.1402128 |
| [98] |
Sajanti E.M., Gröndahl-Yli-Hannuksela K., Kauko T., He Q., Hytönen J. Lyme Borreliosis and Deficient Mannose-Binding Lectin Pathway of Complement // J Immunol. 2015. Vol. 194, N 1. P. 358–363. doi: 10.4049/jimmunol.1402128 |
| [99] |
Coumou J, Wagemakers A, Narasimhan S, et al. The role of Mannose Binding Lectin in the immune response against Borrelia burgdorferi sensu lato. Sci Rep. 2019;9(1):1431. doi: 10.1038/s41598-018-37922-8 |
| [100] |
Coumou J., Wagemakers A., Narasimhan S., et al. The role of Mannose Binding Lectin in the immune response against Borrelia burgdorferi sensu lato // Sci Rep. 2019. Vol. 9, N 1. P. 1431. doi: 10.1038/s41598-018-37922-8 |
| [101] |
Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick Borne Dis. 2013;4(1-2):26–34. doi: 10.1016/j.ttbdis.2012.10.039 |
| [102] |
Kraiczy P., Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression // Ticks Tick Borne Dis. 2013. Vol. 4, N 1-2. P. 26–34. doi: 10.1016/j.ttbdis.2012.10.039 |
| [103] |
Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. 2013;4(4):e00481-13. doi: 10.1128/mBio.00481-13 |
| [104] |
Hallström T., Siegel C., Mörgelin M., et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway // mBio. 2013. Vol. 4, N 4. P. e00481-13. doi: 10.1128/mBio.00481-13 |
| [105] |
Sayfullin RF, Zvereva NN, Saifullin МА, et al. Detection of antibodies to B. burgdorferi by enzyme immunoassay in patients with Lyme borreliosis. Children Infections. 2022;21(4):32–36. (In Russ). doi: 10.22627/2072-8107-2022-21-4-32-36 |
| [106] |
Сайфуллин Р.Ф., Зверева Н.Н., Сайфуллин М.А., и др. Определение антител к B. burgdorferi методом иммуноферментного анализа у пациентов с иксодовым клещевым боррелиозом // Детские инфекции. 2022, Т. 21, № 4. С. 32–36. doi: 10.22627/2072-8107-2022-21-4-32-36 |
| [107] |
Markowicz M, Reiter M, Gamper J, Stanek G, Stockinger H. Persistent Anti-Borrelia IgM Antibodies without Lyme Borreliosis in the Clinical and Immunological Context. Microbiol Spectr. 2021;9(3):e0102021. doi: 10.1128/Spectrum.01020-21 |
| [108] |
Markowicz M., Reiter M., Gamper J., Stanek G., Stockinger H. Persistent Anti-Borrelia IgM Antibodies without Lyme Borreliosis in the Clinical and Immunological Context // Microbiol Spectr. 2021. Vol. 9, N 3. P. e0102021. doi: 10.1128/Spectrum.01020-21 |
| [109] |
D’Arco C, Dattwyler RJ, Arnaboldi PM. Borrelia burgdorferi-specific IgA in Lyme Disease. EBioMedicine. 2017;19:91–97. doi: 10.1016/j.ebiom.2017.04.025 |
| [110] |
D’Arco C., Dattwyler R.J., Arnaboldi P.M. Borrelia burgdorferi-specific IgA in Lyme Disease // EBioMedicine. 2017. N 19. P. 91–97. doi: 10.1016/j.ebiom.2017.04.025 |
| [111] |
Norris SJ. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr. 2014;2(6). doi: 10.1128/microbiolspec.MDNA3-0038-2014 |
| [112] |
Norris S.J. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity // Microbiol Spectr. 2014. Vol. 2, N 6. doi: 10.1128/microbiolspec.MDNA3-0038-2014 |
| [113] |
Jiang R, Meng H, Raddassi K, et al. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight. 2021;6(12):e148035. doi: 10.1172/jci.insight.148035 |
| [114] |
Jiang R., Meng H., Raddassi K., et al. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells // JCI Insight. 2021. Vol. 6, N 12. P. e148035. doi: 10.1172/jci.insight.148035 |
| [115] |
Lasky CE, Pratt CL, Hilliard KA, Jones JL, Brown CR. T Cells Exacerbate Lyme Borreliosis in TLR2-Deficient Mice. Front Immunol. 2016;(7):468. doi: 10.3389/fimmu.2016.00468 |
| [116] |
Lasky C.E., Pratt C.L., Hilliard K.A., Jones J.L., Brown C.R. T Cells Exacerbate Lyme Borreliosis in TLR2-Deficient Mice // Front Immunol. 2016. N 7. P. 468. doi: 10.3389/fimmu.2016.00468 |
| [117] |
Divan A, Budd RC, Tobin RP, Newell-Rogers MK. γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol. 2015;97(4):653–663. doi: 10.1189/jlb.2RU0714-343RR |
| [118] |
Divan A., Budd R.C., Tobin R.P., Newell-Rogers M.K. γδ T Cells and dendritic cells in refractory Lyme arthritis // J Leukoc Biol. 2015. Vol. 97, N 4. P. 653–663. doi: 10.1189/jlb.2RU0714-343RR |
Eco-vector
/
| 〈 |
|
〉 |