Molecular patterns of neurodegeneration in coronavirus infection caused by SARS-CoV-2
Aleksandr O. Mikhailov , Natalia G. Plekhova , Svetlana A. Sokotun , Anna I. Simakova , Anastasia S. Bedareva
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (3) : 149 -158.
Molecular patterns of neurodegeneration in coronavirus infection caused by SARS-CoV-2
BACKGROUND: The reports on the neurological and psychiatric consequences of coronavirus infection are of particular relevance owing to their limited availability. The molecular patterns of nerve tissue damage are an important task for understanding the underlying mechanisms of neurodegeneration.
AIM: To study the dynamics of changes in the content of markers of neurodegeneration and neuroplasticity in patients with coronavirus infection in the acute and long-term periods.
MATERIALS AND METHODS: A total of 200 patients aged 51–83 years were assessed and categorized into two age groups: 51–65 years and 66–83 years. The levels of neurodegeneration markers were determined in the blood serum: neurofilament heavy chains (NEFH), S100 A6 protein, S100 B protein, β-amyloid 1-42 (Aβ1-42), microfilament associated tau protein (MAPt), serum amyloid P (SAP), and neuroplasticity: neurotrophin 3 (NT3), neurotrophin 4 (NT4). The study was performed thrice in the acute period of the disease at the time of admission to the hospital and at 6 and 12 months after discharge.
RESULTS: In the first group of patients, in the acute period of coronavirus infection, women showed higher concentrations of S100 A6 (3.2±0.2), S100 B (0.4±0.06), NT3 (1.1±0.1), and MAPt (0.13±0.02), while the values for the men were NEFH (0.15±0.03), Aβ1-42 (2.1±0.1), and SAP (4.5±0.06). In the long-term, a general tendency of long persistence of high levels of the markers of neurodegeneration and neuroprotection was noted in young men compared to women, indicating a long period of rehabilitation. After 12 months, the level of calcium-binding proteins S100 A6 and S100 B in men was 1.5±0.2 pg/mL and 0.3±0.04 ng/mL, which was 1.1±0.1 pg/mL and 0.2±0.04 ng/mL, respectively, in women. The level of SAP in men during the long-term period after 12 months was 4.3±0.1 versus 3.9±0.2 ng/mL in women, indicating a significant difference.
Analyses of the results for the patients in the second group indicated a higher level of S100 A6 and Aβ1-42 in the acute period for women, while men showed higher levels of S100 B, NT3, and SAP.
CONCLUSION: The changes in patients with coronavirus infection both in the acute and late periods indicated active neurodegeneration processes in different age groups, which manifested as a result of an increase in the concentration of specific proteins in the blood serum.
coronavirus infection / neurodegeneration / neuroplasticity / COVID-19
| [1] |
Shashel VA, Podporina LA, Pervishko OV. Effectiveness of the rehabilitation program for schoolchildren with autonomic dysfunction syndrome after respiratory infections. Child Adolescent Rehabilitat. 2017;(2):27–30. (In Russ). |
| [2] |
Шашель В.А., Подпорина Л.А., Первишко О.В. Эффективность программы реабилитации школьников с синдромом вегетативной дисфункции после перенесенных респираторных инфекций // Детская и подростковая реабилитация. 2017. № 2. С. 27–30. |
| [3] |
Chandra A, Johri A. A peek into Pandora’s box: COVID-19 and neurodegeneration. Brain Sci. 2022;12(2):190. doi: 10.3390/brainsci12020190 |
| [4] |
Chandra A., Johri A. A peek into Pandora’s box: COVID-19 and neurodegeneration // Brain Sci. 2022. Vol. 12, N 2. P. 190. doi: 10.3390/brainsci12020190 |
| [5] |
Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Therapy. 2020;12(1):69. doi: 10.1186/s13195-020-00640-3 |
| [6] |
Heneka M.T., Golenbock D., Latz E., et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease // Alzheimers Res Therapy. 2020. Vol. 12, N 1. P. 69. doi: 10.1186/s13195-020-00640-3 |
| [7] |
Rodriguez M, Soler Y, Perry M, et al. Impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the nervous system: Implications of COVID-19 in neurodegeneration. Front Neurol. 2020;(11);583459. doi: 10.3389/fneur.2020.583459 |
| [8] |
Rodriguez M., Soler Y., Perry M., et al. Impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the nervous system: Implications of COVID-19 in neurodegeneration // Front Neurol. 2020. N 11. P. 583459. doi: 10.3389/fneur.2020.583459 |
| [9] |
Mahalakshmi AM, Ray B, Tuladhar S, et al. Does COVID-19 contribute to development of neurological disease? Immun Inflamm Dis. 2021;9(1):48–58. doi: 10.1002/iid3.387 |
| [10] |
Mahalakshmi A.M., Ray B., Tuladhar S., et al. Does COVID-19 contribute to development of neurological disease? // Immun Inflamm Dis. 2021. Vol. 9, N 1. P. 48–58. doi: 10.1002/iid3.387 |
| [11] |
Krasemann S, Haferkamp U, Pfefferle S, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17(2):307–320. doi: 10.1016/j.stemcr.2021.12.011 |
| [12] |
Krasemann S., Haferkamp U., Pfefferle S., et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2 // Stem Cell Reports. 2022. Vol. 17, N 2. P. 307–320. doi: 10.1016/j.stemcr.2021.12.011 |
| [13] |
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virology. 2020;92(7):699–702. doi: 10.1002/jmv.25915 |
| [14] |
Paniz-Mondolfi A., Bryce C., Grimes Z., et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) // J Med Virology. 2020. Vol. 92, N 7. P. 699–702. doi: 10.1002/jmv.25915 |
| [15] |
Malashenkova IK, Khailov NA, Krynsky SA, et al. The effects of neurotrophic therapy on systemic inflammation, the levels of BDNF, IGF-2, and Nt-4 in the syndrome of mild cognitive impairment. Meditsinskaya Immunologiya. 2017;19(S):289. (In Russ). |
| [16] |
Малашенкова И.К., Хайлов Н.А., Крынский С.А., и др. Эффекты нейротрофической терапии на системное воспаление, уровни BDNF, IGF-2 и Nt-4 при синдроме мягкого когнитивного снижения // Медицинская иммунология. 2017. Т. 19, № S. С. 289. |
| [17] |
Janiszewski SN. COVID-19, cerebrovascular pathology and neurodegeneration. The main regularities and possible therapy. Nerve Dis. 2022;(3):16–23. (In Russ). doi: 10.24412/2226-0757-2022-12906 |
| [18] |
Янишевский С.Н. COVID-19, цереброваскулярная патология и нейродегенерация. Основные закономерности и возможности терапии // Нервные болезни. 2022. № 3. С. 16–23. doi: 10.24412/2226-0757-2022-12906 |
| [19] |
Provisional guidelines “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”. Version 10. (Accessed: 08.02.2021). Moscow; 2012. 262 p. (In Russ). |
| [20] |
Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 10 (08.02.2021). Москва, 2012. 262 с. |
| [21] |
Grzybowski AM. Data types, validation of distribution and descriptive statistics. Human Ecology. 2008;(1):52–58. (In Russ). |
| [22] |
Гржибовский А.М. Типы данных, проверка распределения и описательная статистика // Экология человека. 2008. № 1. С. 52–58. |
| [23] |
Leonov VP. Error statistical analysis of biomedical data. Int J Med Pract. 2007;(2):19–35. (In Russ). |
| [24] |
Леонов В.П. Ошибки статистического анализа биомедицинских данных // Международный журнал медицинской практики. 2007. № 2. С. 19–35. |
| [25] |
Rebrova OY. Statistical analysis of medical data. The application of the STATISTICA software package. Moscow: Media Sfera; 2002. 312 р. (In Russ). |
| [26] |
Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistica. Москва: Медиа Сфера, 2002. 312 с. |
| [27] |
Bubak AN, Beseler C, Como CN, et al. Amylin, Aβ42, and amyloid in varicella Zoster virus vasculopathy cerebrospinal fluid and infected vascular cells. The J Infectious Dis. 2021;223(7): 1284–1294. doi: 10.1093/infdis/jiaa513 |
| [28] |
Bubak A.N., Beseler C., Como C.N., et al. Amylin, Aβ42, and amyloid in varicella Zoster virus vasculopathy cerebrospinal fluid and infected vascular cells // The J Infectious Dis. 2021. Vol. 223, N 7. P. 1284–1294. doi: 10.1093/infdis/jiaa513 |
| [29] |
Ziff OJ, Ashton NJ, Mehta PR, et al. Amyloid processing in COVID-19-associated neurological syndromes. J Neurochemistry. 2022;161(2):146–157. doi: 10.1111/jnc.15585 |
| [30] |
Ziff O.J., Ashton N.J., Mehta P.R., et al. Amyloid processing in COVID-19-associated neurological syndromes // J Neurochemistry. 2022. Vol. 161, N 2. P. 146–157. doi: 10.1111/jnc.15585 |
| [31] |
Matveeva MV, Samoylova YG, Zhukova N, et al. Taupathy and cognitive impairment in experimental diabetes mellitus. Diabetes Mellitus. 2017;20(3):181–184. (In Russ). doi: 10.14341/2072-0351-5842 |
| [32] |
Матвеева М.В., Самойлова Ю.Г., Жукова Н.Г., и др. Таупатия и когнитивные нарушения при экспериментальном сахарном диабете // Сахарный диабет. 2017. Т. 20, № 3. С. 181–184. doi: 10.14341/2072-0351-5842 |
| [33] |
Dobrindt K, Hoagland DA, Seah C, et al. Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. Stem Cell Rep. 2021;16(3):505–518. doi: 10.1016/j.stemcr.2021.02.010 |
| [34] |
Dobrindt K., Hoagland D.A., Seah C., et al. Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection // Stem Cell Rep. 2021. Vol. 16, N 3. P. 505–518. doi: 10.1016/j.stemcr.2021.02.010 |
| [35] |
Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care. 2020;24(1):353. doi: 10.1186/s13054-020-03062-7 |
| [36] |
Pons S., Fodil S., Azoulay E., Zafrani L. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection // Critical Care. 2020. Vol. 24, N 1. P. 353. doi: 10.1186/s13054-020-03062-7 |
| [37] |
Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135 |
| [38] |
Song E., Zhang C., Israelow B., et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain // J Exp Med. 2021. Vol. 218, N 3. P. e20202135. doi: 10.1084/jem.20202135 |
| [39] |
Fenrich M, Mrdenovic S, Balog M, et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury. Front Cell Neurosci. 2020;(14):229. |
| [40] |
Fenrich M., Mrdenovic S., Balog M., et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury // Front Cell Neurosci. 2020. N 14. P. 229. |
| [41] |
Pizzanelli C, Milano C, Canovetti S, et al. Autoimmune limbic encephalitis related to SARS-CoV-2 infection: Case-report and review of the literature. Brain Behav Immun Health. 2021;(12):100210. doi: 10.1016/j.bbih.2021.100210 |
| [42] |
Pizzanelli C., Milano C., Canovetti S., et al. Autoimmune limbic encephalitis related to SARS-CoV-2 infection: Case-report and review of the literature // Brain Behav Immun Health. 2021. N 12. P. 100210. doi: 10.1016/j.bbih.2021.100210 |
| [43] |
Chertok VM, Chertok AG. Regulatory potential of brain capillaries. Pacific Med J. 2016;(2):72–80. (In Russ). doi: 10.17238/1609-1175.2016.2.72 |
| [44] |
Черток В.М., Черток А.Г. Регуляторный потенциал капилляров мозга // Тихоокеанский медицинский журнал. 2016. № 2. С. 72–80. doi: 10.17238/1609-1175.2016.2.72 |
| [45] |
Chekhov VP, Lebedev SV, Blinov DV, et al. The pathogenetic role of impaired permeability of the blood-brain barrier for neurospecific proteins in perinatal hypoxic-ischemic lesions of the central nervous system in newborns. Questions Gynecol Obstetrics Perinatol. 2004;3(2):50–61. (In Russ). |
| [46] |
Чехонин В.П., Лебедев С.В., Блинов Д.В., и др. Патогенетическая роль нарушения проницаемости гематоэнцефалического барьера для нейроспецифических белков при перинатальных гипоксически-ишемических поражениях центральной нервной системы у новорожденных // Вопросы гинекологии, акушерства и перинатологии. 2004. Т. 3, № 2. С. 50–61. |
| [47] |
Zhavoronok TV, Ryazantseva NV, Stepovaya EA, et al. Changes in the content of calcium ions and expression of apoptosis regulatory proteins in tissue hypoxia. Int J Exp Educat. 2013; (4-2):152–153. (In Russ). |
| [48] |
Жаворонок Т.В., Рязанцева Н.В., Степовая Е.А., и др. Изменение содержания ионов кальция и экспрессии белков-регуляторов апоптоза при тканевой гипоксии // Международный журнал экспериментального образования. 2013. № 4-2. С. 152–153. |
| [49] |
Kuznik BI, Khavinson VH, Linkova NS. COVID-19: Influence on immunity, hemostasis system and possible ways of correction. Uspekhi Fiziologicheskikh Nauk. 2020;51(4):51–63. (In Russ). |
| [50] |
Кузник Б.И., Хавинсон В.Х., Линькова Н.С. COVID-19: влияние на иммунитет, систему гемостаза и возможные пути коррекции // Успехи физиологических наук. 2020. Т. 51, № 4. С. 51–63. |
| [51] |
Gomazkov OA. Neurotrophic and growth factors of the brain: Regulatory specificity and therapeutic potential. Successes Physiological Sci. 2005;36(2):22–40. (In Russ). |
| [52] |
Гомазков О.А. Нейротрофические и ростовые факторы мозга: регуляторная специфика и терапевтический потенциал // Успехи физиологических наук. 2005. Т. 36, № 2. С. 22–40. |
Eco-vector
/
| 〈 |
|
〉 |