Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens

Elena I. Burtseva , Anna D. Panova , Ludmila V. Kolobukhina , Anna V. Ignatjeva , Elena S. Kirillova , Natalia V. Breslav , Svetlana V. Trushakova , Evgeniya A. Mukasheva , Elena L. Feodoritova , Kirill G. Krasnoslobodtsev , Liliya N. Merkulova , Irina N. Khlopova , Lidiya B. Kisteneva , Irina S. Kruzhkova , Yuliya S. Levochkina , Anastasia S. Krepkaia , Aleksandra G. Rosatkevich , Andrey B. Komissarov , Svetlana B. Yatsishina , Andrey A. Pochtovyi , Daria D. Kustova , Vladimir A. Gushchin , Marina V. Bazarova , Svetlana V. Smetanina , Natalia A. Tsvetkova

Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 67 -77.

PDF
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 67 -77. DOI: 10.17816/EID321873
Original study articles
research-article

Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens

Author information +
History +
PDF

Abstract

BACKGROUND: This study was conducted to determine the characteristics of various viral respiratory pathogens spreading during the epidemic season 2021–2022 and the frequency of co-infection with SARS-CoV-2 and influenza.

AIM: To assess the development of the influenza epidemic and frequency of cases of co-infection with respiratory pathogens in patients with acute respiratory viral infections between 2021 and 2022.

MATERIALS AND METHODS: Traditional and hospital epidemiological surveillance methods for acute respiratory viral infections were used.

RESULTS: The epidemic season of 2021–2022 was characterized by the early activity of the influenza A(H3N2) virus and the emergence and rapid spread of the omicron variant of SARS-CoV-2. The distribution of different respiratory pathogens during the epidemic season 2021–2022 was clearly traced: SARS-CoV-2 (18.8%) was predominant, followed by influenza viruses (10.6%) and pathogens of other acute respiratory viral infections (0.4–3.7%). With respect to influenza A (H3N2) and B viruses, the heterogeneity of their populations and drift variability in relation to vaccine strains were noted.

DISCUSSION: The frequency of co-infection with various respiratory pathogens was low, i.e., it was no more than 0.1%according to traditional surveillance, and no more than 9.2% in the hospital surveillance. The rationale for updating the composition of influenza vaccines for the countries in the Northern Hemisphere for 2022–2023 season was identified.

CONCLUSION: At present, early diagnosis of influenza is important given the availability of effective drugs with a direct mechanism of action for the prevention and treatment of this pathogen. Timely use of anti-influenza drugs will reduce the risks of a severe course, complications, and death, including co-infection with SARS-CoV-2.

Keywords

ARVI / co-infections / epidemic season 2021–2022 / influenza / SARS-CoV-2 / composition of influenza vaccines in the 2022–2023 season in the Northern Hemisphere

Cite this article

Download citation ▾
Elena I. Burtseva, Anna D. Panova, Ludmila V. Kolobukhina, Anna V. Ignatjeva, Elena S. Kirillova, Natalia V. Breslav, Svetlana V. Trushakova, Evgeniya A. Mukasheva, Elena L. Feodoritova, Kirill G. Krasnoslobodtsev, Liliya N. Merkulova, Irina N. Khlopova, Lidiya B. Kisteneva, Irina S. Kruzhkova, Yuliya S. Levochkina, Anastasia S. Krepkaia, Aleksandra G. Rosatkevich, Andrey B. Komissarov, Svetlana B. Yatsishina, Andrey A. Pochtovyi, Daria D. Kustova, Vladimir A. Gushchin, Marina V. Bazarova, Svetlana V. Smetanina, Natalia A. Tsvetkova. Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens. Epidemiology and Infectious Diseases, 2023, 28(2): 67-77 DOI:10.17816/EID321873

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lvov DK, Burtseva EI, Kolobukhina LV, et al. Peculiarities of the influenza and ARVI viruses circulation during epidemic season 2019–2020 in some regions of Russia. Problems of Virology. 2020;65(6):335–349. (In Russ). doi: 10.36233/0507-4088-2020-65-6-4

[2]

Львов Д.К., Бурцева Е.И., Колобухина Л.В., и др. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019–2020 гг. в отдельных регионах России // Вопросы вирусологии. 2020. Т. 65, № 6. С. 335–349. doi: 10.36233/0507-4088-2020-65-6-4

[3]

Burtseva EI, Kolobukhina LV, Voronina OL, et al. Features of the circulation of ARVI pathogens during of emergence and widespread of SARS-CoV-2 in the 2018–2021. Epidemiology and Vaccinal Prevention. 2022;21(4):16–26. (In Russ). doi: 10.31631/2073-3046-2022-21-4-16-26

[4]

Бурцева Е.И., Колобухина Л.В., Воронина О.Л., и др. Особенности циркуляции возбудителей ОРВИ на фоне появления и широкого распространения SARS-CoV-2 в 2018–2021 годы // Эпидемиология и вакцинопрофилактика. 2022. Т. 21, № 4. С. 16–26. doi: 10.31631/2073-3046-2022-21-4-16-26

[5]

Sominina AA, Danilenko DM, Stolyarov KA, et al. Interference of SARS-CoV-2 with other Respiratory Viral Infections agents during Pandemic. Epidemiology and Vaccinal Prevention. 2021;20(4): 28–39. (In Russ). doi: 10.31631/2073-3046-2021-20-4-28-39

[6]

Соминина А.А., Даниленко Д.М., Столяров К.А., и др. Интерференция SARS-CoV-2 с другими возбудителями респираторных вирусных инфекций в период пандемии // Эпидемиология и вакцинопрофилактика. 2021. Т. 20, № 4. С. 28–39. doi: 10.31631/2073-3046-2021-20-4-28-39

[7]

Yatsishina SB, Mamoshina MV, Elkina MA, et al. Prevalence of ARVI, influenza and COVID-19 pathogens in individuals without symptoms of respiratory infections. Problems of Virology. 2020; 65:267–276. (In Russ).

[8]

Яцышина С.Б., Мамошина М.В., Елькина М.А., и др. Распространённость возбудителей ОРВИ, гриппа и COVID-19 у лиц с без симптомов респираторной инфекции // Вопросы вирусологии. 2020. Т. 65. С. 267–276. doi:

[9]

Huang XB, Yuan L, Ye CX, et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China. Int J Infect Dis. 2020;98:21–32. doi: 10.1016/j.ijid.2020.06.051

[10]

Huang X.B., Yuan L., Ye C.X., et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009-2018 in southern China // Int J Infect Dis. 2020. Vol. 98. P. 21–32. doi: 10.1016/j.ijid.2020.06.051

[11]

Sanz I, Perez D, Dominguez-Gill M, Lejarazude RO, Eiros JM. Coinfection of Influenza and other respiratory viruses are associated to children. An Pediatr (Engl Ed). 2022;96(4):334–341. doi: 10.1016/j.anpede.2021.03.002

[12]

Sanz I., Perez D., Dominguez-Gill M., Lejarazude R.O., Eiros J.M. Coinfection of Influenza and other respiratory viruses are associated to children // An Pediatr (Engl Ed). 2022. Vol. 96, N 4. P. 334–341. doi: 10.1016/j.anpede.2021.03.002

[13]

Zhou B, Lin X, Wang W, et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol. 2014;52(5):1330–1337. doi: 10.1128/JCM.03265-13

[14]

Zhou B., Lin X., Wang W., et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics // J Clin Microbiol. 2014. Vol. 52, N 5. P. 1330-7. doi: 10.1128/JCM.03265-13

[15]

Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–103013. doi: 10.1128/JVI.01109-09

[16]

Zhou B., Donnelly M.E., Scholes D.T., et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses // J Virol. 2009. Vol. 83, N 19. P. 10309-10313. doi: 10.1128/JVI.01109-09

[17]

The development of the influenza epidemic in the European region in 2021–2022 [Internet] [cited 2023 Apr 20]. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs.

[18]

Развитие эпидемии гриппа в Европейском регионе в 2021–2022 гг. [интернет] [дата обращения: 20.04.2023]. Доступ по ссылке: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs.

[19]

Recommendations on the composition of influenza vaccines for the countries of the Northern Hemisphere for the 2022–2023 season. Available on: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/.

[20]

Рекомендации по составу гриппозных вакцин для стран Северного полушария на сезон 2022–2023 г. Доступно на: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/.

[21]

Martínez-Roig A, Salvadó M, Caballero-Rabasco MA, et al. Viral coinfection in childhood respiratory tract infections. Arch Bronconeumol. 2015;51(1):5–9. doi: 10.1016/j.arbres.2014.01.018

[22]

Martínez-Roig A., Salvadó M., Caballero-Rabasco M.A., et al. Viral coinfection in childhood respiratory tract infections // Arch Bronconeumol. 2015. Vol. 51, N 1. P. 5–9. doi: 10.1016/j.arbres.2014.01.018

[23]

Meligy B, Sayed A, Ismail DK, et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR. Gaz Egypt Paediatr Assoc. 2016;64(1):13–19. doi: 10.1016/j.epag.2015.11.005

[24]

Meligy B., Sayed A., Ismail D.K., et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR // Gaz Egypt Paediatr Assoc. 2016. Vol. 64, N 1. P. 13–19. doi: 10.1016/j.epag.2015.11.005

[25]

Korsun NS, Angelova SG, Trifonova IT, et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019. Intervirology. 2021;64(4):194–202. doi: 10.1159/000516821

[26]

Korsun N.S., Angelova S.G., Trifonova I.T., et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019 // Intervirology. 2021. Vol. 64, N 4. P. 194–202. doi: 10.1159/000516821

[27]

Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085–2086. doi: 10.1001/jama.2020.6266

[28]

Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens // JAMA. 2020. Vol. 323, N 20. P. 2085–2086. doi: 10.1001/jama.2020.6266

[29]

Nowak MD, Sordillo EM, Gitman MR, Paniz Mondolfi AE. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J Med Virol. 2020;92(10):1699–1700. doi: 10.1002/jmv.25953

[30]

Nowak M.D., Sordillo E.M., Gitman M.R., Paniz Mondolfi A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? // J Med Virol. 2020. Vol. 92, N. 10. P. 1699–1700. doi: 10.1002/jmv.25953

[31]

Cooksey GLS, Morales C, Linde L, et al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020-June 12, 2021. Emerg Infect Dis. 2022;28(1):9–19. doi: 10.3201/eid2801.211682

[32]

Cooksey G.L.S., Morales C., Linde Let al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020–June 12, 2021 // Emerg Infect Dis. 2022. Vol. 28, N 1. P. 9–19. doi: 10.3201/eid2801.211682

[33]

Alhumaid S, Al Mutair A, Al Alawi Z, et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens. 2021;10(7):809. doi: 10.3390/pathogens10070809

[34]

Alhumaid S., Al Mutair A., Al Alawi Z., et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis // Pathogens. 2021. Vol. 10, N 7. P. 809. doi: 10.3390/pathogens10070809

[35]

Dadashi M, Khaleghnejad S, Abedi Elkhichi P, et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:681469. doi: 10.3389/fmed.2021.681469

[36]

Dadashi M., Khaleghnejad S., Abedi Elkhichi P., et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis // Front Med (Lausanne). 2021/ Vol. 8. P. 681469. doi: 10.3389/fmed.2021.681469

[37]

Aggarwal N, Potdar V, Vijay N, et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report. Viruses. 2022;14(3):627. doi: 10.3390/v14030627

[38]

Aggarwal N., Potdar V., Vijay N., et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report // Viruses. 2022. Vol. 14, N 3. P. 627. doi: 10.3390/v14030627

[39]

Kinoshita T, Watanabe K, Sakurai Y, Nishi K, Yoshikawa R, Yasuda J. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters. Sci Rep. 2021;11(1):21259. doi: 10.1038/s41598-021-00809-2

[40]

Kinoshita T., Watanabe K., Sakurai Y., et al. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters // Sci Rep. 2021. Vol. 11, N 1. P. 21259. doi: 10.1038/s41598-021-00809-2

[41]

Zhang AJ, Lee AC, Chan JF, et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters. Clin Infect Dis. 2021;72(12):e978-e992. doi: 10.1093/cid/ciaa1747

[42]

Zhang A.J, Lee A.C., Chan J.F., et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters // Clin Infect Dis. 2021. Vol. 72, N 12. P. e978-e992. doi: 10.1093/cid/ciaa1747

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/