Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens
Elena I. Burtseva , Anna D. Panova , Ludmila V. Kolobukhina , Anna V. Ignatjeva , Elena S. Kirillova , Natalia V. Breslav , Svetlana V. Trushakova , Evgeniya A. Mukasheva , Elena L. Feodoritova , Kirill G. Krasnoslobodtsev , Liliya N. Merkulova , Irina N. Khlopova , Lidiya B. Kisteneva , Irina S. Kruzhkova , Yuliya S. Levochkina , Anastasia S. Krepkaia , Aleksandra G. Rosatkevich , Andrey B. Komissarov , Svetlana B. Yatsishina , Andrey A. Pochtovyi , Daria D. Kustova , Vladimir A. Gushchin , Marina V. Bazarova , Svetlana V. Smetanina , Natalia A. Tsvetkova
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 67 -77.
Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens
BACKGROUND: This study was conducted to determine the characteristics of various viral respiratory pathogens spreading during the epidemic season 2021–2022 and the frequency of co-infection with SARS-CoV-2 and influenza.
AIM: To assess the development of the influenza epidemic and frequency of cases of co-infection with respiratory pathogens in patients with acute respiratory viral infections between 2021 and 2022.
MATERIALS AND METHODS: Traditional and hospital epidemiological surveillance methods for acute respiratory viral infections were used.
RESULTS: The epidemic season of 2021–2022 was characterized by the early activity of the influenza A(H3N2) virus and the emergence and rapid spread of the omicron variant of SARS-CoV-2. The distribution of different respiratory pathogens during the epidemic season 2021–2022 was clearly traced: SARS-CoV-2 (18.8%) was predominant, followed by influenza viruses (10.6%) and pathogens of other acute respiratory viral infections (0.4–3.7%). With respect to influenza A (H3N2) and B viruses, the heterogeneity of their populations and drift variability in relation to vaccine strains were noted.
DISCUSSION: The frequency of co-infection with various respiratory pathogens was low, i.e., it was no more than 0.1%according to traditional surveillance, and no more than 9.2% in the hospital surveillance. The rationale for updating the composition of influenza vaccines for the countries in the Northern Hemisphere for 2022–2023 season was identified.
CONCLUSION: At present, early diagnosis of influenza is important given the availability of effective drugs with a direct mechanism of action for the prevention and treatment of this pathogen. Timely use of anti-influenza drugs will reduce the risks of a severe course, complications, and death, including co-infection with SARS-CoV-2.
ARVI / co-infections / epidemic season 2021–2022 / influenza / SARS-CoV-2 / composition of influenza vaccines in the 2022–2023 season in the Northern Hemisphere
| [1] |
Lvov DK, Burtseva EI, Kolobukhina LV, et al. Peculiarities of the influenza and ARVI viruses circulation during epidemic season 2019–2020 in some regions of Russia. Problems of Virology. 2020;65(6):335–349. (In Russ). doi: 10.36233/0507-4088-2020-65-6-4 |
| [2] |
Львов Д.К., Бурцева Е.И., Колобухина Л.В., и др. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019–2020 гг. в отдельных регионах России // Вопросы вирусологии. 2020. Т. 65, № 6. С. 335–349. doi: 10.36233/0507-4088-2020-65-6-4 |
| [3] |
Burtseva EI, Kolobukhina LV, Voronina OL, et al. Features of the circulation of ARVI pathogens during of emergence and widespread of SARS-CoV-2 in the 2018–2021. Epidemiology and Vaccinal Prevention. 2022;21(4):16–26. (In Russ). doi: 10.31631/2073-3046-2022-21-4-16-26 |
| [4] |
Бурцева Е.И., Колобухина Л.В., Воронина О.Л., и др. Особенности циркуляции возбудителей ОРВИ на фоне появления и широкого распространения SARS-CoV-2 в 2018–2021 годы // Эпидемиология и вакцинопрофилактика. 2022. Т. 21, № 4. С. 16–26. doi: 10.31631/2073-3046-2022-21-4-16-26 |
| [5] |
Sominina AA, Danilenko DM, Stolyarov KA, et al. Interference of SARS-CoV-2 with other Respiratory Viral Infections agents during Pandemic. Epidemiology and Vaccinal Prevention. 2021;20(4): 28–39. (In Russ). doi: 10.31631/2073-3046-2021-20-4-28-39 |
| [6] |
Соминина А.А., Даниленко Д.М., Столяров К.А., и др. Интерференция SARS-CoV-2 с другими возбудителями респираторных вирусных инфекций в период пандемии // Эпидемиология и вакцинопрофилактика. 2021. Т. 20, № 4. С. 28–39. doi: 10.31631/2073-3046-2021-20-4-28-39 |
| [7] |
Yatsishina SB, Mamoshina MV, Elkina MA, et al. Prevalence of ARVI, influenza and COVID-19 pathogens in individuals without symptoms of respiratory infections. Problems of Virology. 2020; 65:267–276. (In Russ). |
| [8] |
Яцышина С.Б., Мамошина М.В., Елькина М.А., и др. Распространённость возбудителей ОРВИ, гриппа и COVID-19 у лиц с без симптомов респираторной инфекции // Вопросы вирусологии. 2020. Т. 65. С. 267–276. doi: |
| [9] |
Huang XB, Yuan L, Ye CX, et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China. Int J Infect Dis. 2020;98:21–32. doi: 10.1016/j.ijid.2020.06.051 |
| [10] |
Huang X.B., Yuan L., Ye C.X., et al. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009-2018 in southern China // Int J Infect Dis. 2020. Vol. 98. P. 21–32. doi: 10.1016/j.ijid.2020.06.051 |
| [11] |
Sanz I, Perez D, Dominguez-Gill M, Lejarazude RO, Eiros JM. Coinfection of Influenza and other respiratory viruses are associated to children. An Pediatr (Engl Ed). 2022;96(4):334–341. doi: 10.1016/j.anpede.2021.03.002 |
| [12] |
Sanz I., Perez D., Dominguez-Gill M., Lejarazude R.O., Eiros J.M. Coinfection of Influenza and other respiratory viruses are associated to children // An Pediatr (Engl Ed). 2022. Vol. 96, N 4. P. 334–341. doi: 10.1016/j.anpede.2021.03.002 |
| [13] |
Zhou B, Lin X, Wang W, et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol. 2014;52(5):1330–1337. doi: 10.1128/JCM.03265-13 |
| [14] |
Zhou B., Lin X., Wang W., et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics // J Clin Microbiol. 2014. Vol. 52, N 5. P. 1330-7. doi: 10.1128/JCM.03265-13 |
| [15] |
Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–103013. doi: 10.1128/JVI.01109-09 |
| [16] |
Zhou B., Donnelly M.E., Scholes D.T., et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses // J Virol. 2009. Vol. 83, N 19. P. 10309-10313. doi: 10.1128/JVI.01109-09 |
| [17] |
The development of the influenza epidemic in the European region in 2021–2022 [Internet] [cited 2023 Apr 20]. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs. |
| [18] |
Развитие эпидемии гриппа в Европейском регионе в 2021–2022 гг. [интернет] [дата обращения: 20.04.2023]. Доступ по ссылке: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveillance-outputs. |
| [19] |
Recommendations on the composition of influenza vaccines for the countries of the Northern Hemisphere for the 2022–2023 season. Available on: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/. |
| [20] |
Рекомендации по составу гриппозных вакцин для стран Северного полушария на сезон 2022–2023 г. Доступно на: https://www.who.int/influenza/vaccines/virus/recommendations/2022-23_north/en/. |
| [21] |
Martínez-Roig A, Salvadó M, Caballero-Rabasco MA, et al. Viral coinfection in childhood respiratory tract infections. Arch Bronconeumol. 2015;51(1):5–9. doi: 10.1016/j.arbres.2014.01.018 |
| [22] |
Martínez-Roig A., Salvadó M., Caballero-Rabasco M.A., et al. Viral coinfection in childhood respiratory tract infections // Arch Bronconeumol. 2015. Vol. 51, N 1. P. 5–9. doi: 10.1016/j.arbres.2014.01.018 |
| [23] |
Meligy B, Sayed A, Ismail DK, et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR. Gaz Egypt Paediatr Assoc. 2016;64(1):13–19. doi: 10.1016/j.epag.2015.11.005 |
| [24] |
Meligy B., Sayed A., Ismail D.K., et al. Detection of viral acute lower respiratory tract infection in hospitalized infants using real-time PCR // Gaz Egypt Paediatr Assoc. 2016. Vol. 64, N 1. P. 13–19. doi: 10.1016/j.epag.2015.11.005 |
| [25] |
Korsun NS, Angelova SG, Trifonova IT, et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019. Intervirology. 2021;64(4):194–202. doi: 10.1159/000516821 |
| [26] |
Korsun N.S., Angelova S.G., Trifonova I.T., et al. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016–2019 // Intervirology. 2021. Vol. 64, N 4. P. 194–202. doi: 10.1159/000516821 |
| [27] |
Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085–2086. doi: 10.1001/jama.2020.6266 |
| [28] |
Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens // JAMA. 2020. Vol. 323, N 20. P. 2085–2086. doi: 10.1001/jama.2020.6266 |
| [29] |
Nowak MD, Sordillo EM, Gitman MR, Paniz Mondolfi AE. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J Med Virol. 2020;92(10):1699–1700. doi: 10.1002/jmv.25953 |
| [30] |
Nowak M.D., Sordillo E.M., Gitman M.R., Paniz Mondolfi A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? // J Med Virol. 2020. Vol. 92, N. 10. P. 1699–1700. doi: 10.1002/jmv.25953 |
| [31] |
Cooksey GLS, Morales C, Linde L, et al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020-June 12, 2021. Emerg Infect Dis. 2022;28(1):9–19. doi: 10.3201/eid2801.211682 |
| [32] |
Cooksey G.L.S., Morales C., Linde Let al. Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020–June 12, 2021 // Emerg Infect Dis. 2022. Vol. 28, N 1. P. 9–19. doi: 10.3201/eid2801.211682 |
| [33] |
Alhumaid S, Al Mutair A, Al Alawi Z, et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens. 2021;10(7):809. doi: 10.3390/pathogens10070809 |
| [34] |
Alhumaid S., Al Mutair A., Al Alawi Z., et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis // Pathogens. 2021. Vol. 10, N 7. P. 809. doi: 10.3390/pathogens10070809 |
| [35] |
Dadashi M, Khaleghnejad S, Abedi Elkhichi P, et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:681469. doi: 10.3389/fmed.2021.681469 |
| [36] |
Dadashi M., Khaleghnejad S., Abedi Elkhichi P., et al. COVID-19 and Influenza Co-infection: A Systematic Review and Meta-Analysis // Front Med (Lausanne). 2021/ Vol. 8. P. 681469. doi: 10.3389/fmed.2021.681469 |
| [37] |
Aggarwal N, Potdar V, Vijay N, et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report. Viruses. 2022;14(3):627. doi: 10.3390/v14030627 |
| [38] |
Aggarwal N., Potdar V., Vijay N., et al. SARS-CoV-2 and Influenza Virus Co-Infection Cases Identified through ILI/SARI Sentinel Surveillance: A Pan-India Report // Viruses. 2022. Vol. 14, N 3. P. 627. doi: 10.3390/v14030627 |
| [39] |
Kinoshita T, Watanabe K, Sakurai Y, Nishi K, Yoshikawa R, Yasuda J. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters. Sci Rep. 2021;11(1):21259. doi: 10.1038/s41598-021-00809-2 |
| [40] |
Kinoshita T., Watanabe K., Sakurai Y., et al. Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters // Sci Rep. 2021. Vol. 11, N 1. P. 21259. doi: 10.1038/s41598-021-00809-2 |
| [41] |
Zhang AJ, Lee AC, Chan JF, et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters. Clin Infect Dis. 2021;72(12):e978-e992. doi: 10.1093/cid/ciaa1747 |
| [42] |
Zhang A.J, Lee A.C., Chan J.F., et al. Coinfection by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A(H1N1)pdm09 Virus Enhances the Severity of Pneumonia in Golden Syrian Hamsters // Clin Infect Dis. 2021. Vol. 72, N 12. P. e978-e992. doi: 10.1093/cid/ciaa1747 |
Eco-Vector
/
| 〈 |
|
〉 |