Antibacterial microcins, class II: A review
Larisa P. Blinkova , Mike L. Altshuler , Andrey Yu. Mironov
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 98 -109.
Antibacterial microcins, class II: A review
In medicine, the issue of the use of effective antibacterial substances against drug-resistant microorganisms remains relevant. Most publications on microcins show undoubted prospects for the further development of these pharmacological agents of bacterial origin with multidirectional action (antibacterial, antiviral, antitumor, etc.). One of the features of microcins is their specific inhibitory activity against gram-negative microorganisms (Escherichia, Proteus, Salmonella, Pseudomonas, etc.). This review aimed to briefly summarize current information about one of the groups of microcins (class II) to assess their possible use in practical medicine and scientific research. The review uses sources from the Russian Science Citation Index, Web of Science, Scopus, and PubMed databases.
synthesis / targets / mechanism of action / microcines / classification / application prospects
| [1] |
Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination [Internet]. F1000Research. 2017;6:195. doi: 10.12688/f1000research.10609.1 [cited 2023 Apr 20]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Escherichia+coli+ST131%3A+a+multidrug-resistant+clone+primed+for+global+domination. pii: F1000 Faculty Rev-195. doi: 10.12688/f1000research.10609.1 |
| [2] |
Pitout J.D.D., DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination [интернет]. F1000Research. 2017. Vol. 6. P. 195. doi: 10.12688/f1000research.10609.1 [дата обращения: 20.04.2023]. Доступ по ссылке: https://www.ncbi.nlm.nih.gov/pubmed/?term=Escherichia+coli+ST131%3A+a+multidrug-resistant+clone+primed+for+global+domination. pii: F1000 Faculty Rev-195. doi: 10.12688/f1000research.10609.1 |
| [3] |
Manges AR, Geum HM, Guo A, et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019;32(3):e00135-18 doi: 10.1128/CMR.00135-18 |
| [4] |
Manges A.R., Geum H.M., Guo A., et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages // Clin. Microbiol. Rev. 2019. Vol. 32, N 3. P. e00135-18 doi: 10.1128/CMR.00135-18 |
| [5] |
World Health Organization [Internet]. Lack of new antibiotics threatens global efforts to contain drug-resistant infections. World Health Organization News Release. 2020 [cited 2023 Apr 20]. Available from: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections. |
| [6] |
World Health Organization [интернет]. Lack of new antibiotics threatens global efforts to contain drug-resistant infections // World Health Organization News Release. 2020 [дата обращения: 20.04.2023]. Доступ по ссылке: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections. |
| [7] |
Arnison PG, Bibb MJ, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30(1):108–60. doi: 10.1039/c2np20085f |
| [8] |
Arnison P.G., Bibb M.J., Bierbaum G., et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature // Nat Prod Rep. 2013. Vol. 30, N 1. P. 108–60. doi: 10.1039/c2np20085f |
| [9] |
Tan S, Moore G, Nodwell J. Put a bow on it: knotted antibiotics take center stage. Antibiotics (Basel). 2019;8(3):117. doi: 10.3390/antibiotics8030117 |
| [10] |
Tan S., Moore G., Nodwell J. Put a bow on it: knotted antibiotics take center stage // Antibiotics (Basel). 2019. Vol. 8, N 3. P. 117. doi: 10.3390/antibiotics8030117 |
| [11] |
Collin F, Maxwell A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J Mol Biol. 2019; 431(18):3400–3426. doi: 10.1016/j.jmb.2019.05.050 |
| [12] |
Collin F., Maxwell A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents // J Mol Biol. 2019. Vol. 431, N 18. P. 3400–3426. doi: 10.1016/j.jmb.2019.05.050 |
| [13] |
Vassiliadis G, Destoumieux-Garzón G, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, Microcins M and H47. Antimicrobial agents and chemotherapy. 2010;54(1):288–297. doi: 10.1128/AAC.00744-09 |
| [14] |
Vassiliadis G., Destoumieux-Garzón G., Lombard C., Rebuffat S., Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, Microcins M and H47 // Antimicrobial agents and chemotherapy. 2010. Vol. 54, N 1. P. 288–297. doi: 10.1128/AAC.00744-09 |
| [15] |
Martin P, Tronnet S, Garcie C, Oswald E. Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life. 2017;69(6). doi: 10.1002/iub.1612 |
| [16] |
Martin P., Tronnet S., Garcie C., Oswald E. Interplay between siderophores and colibactin genotoxin in Escherichia coli // IUBMB Life. 2017. Vol. 69, N 6. doi: 10.1002/iub.1612. |
| [17] |
Thomas X, Destoumieux-Garzón D, Peduzzi J, et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem. 2004;279(27):28233–28242. doi: 10.1074/jbc.M400228200 |
| [18] |
Thomas X., Destoumieux-Garzón D., Peduzzi J., et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity // J Biol Chem. 2004. Vol. 279, N 27. P. 28233–28242. doi: 10.1074/jbc.M400228200 |
| [19] |
Bister B, Bischoff D, Nicholson GJ, et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. BioMetals. 2004;17:471–481. doi: 10.1023/B:BIOM.0000029432.69418.6a |
| [20] |
Bister B., Bischoff D., Nicholson G.J., et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica // BioMetals. 2004. Vol. 17. P. 471–481. doi: 10.1023/B:BIOM.0000029432.69418.6a |
| [21] |
Rebuffat S. Microcins. In: Kastin A., editor. Handbook of biologically active peptides. 2nd ed. Amsterdam: Elsevier/AP; 2013. P. 129–137. |
| [22] |
Rebuffat S. Microcins. In: Kastin A., editor. Handbook of biologically active peptides. 2nd ed. Amsterdam : Elsevier/AP, 2013. P. 129–137. |
| [23] |
Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans. 2012;40(6);1456–1462. doi: 10.1042/BST20120183 |
| [24] |
Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria // Biochem Soc Trans. 2012. Vol. 40, N 6. P. 1456–1462. doi: 10.1042/BST20120183 |
| [25] |
Marcoleta AE, Gutiérrez-Cortez S, Hurtado F, et al. The Ferric uptake regulator (Fur) and iron availability control the production and maturation of the antibacterial peptide microcin E492. PLoS ONE. 2018;13(8):e0200835 doi: 10.1371/journal.pone.0200835 |
| [26] |
Marcoleta A.E., Gutiérrez-Cortez S., Hurtado F., et al. The Ferric uptake regulator (Fur) and iron availability control the production and maturation of the antibacterial peptide microcin E492 // PLoS One. 2018. Vol. 13, N 8. P. e0200835 doi: 10.1371/journal.pone.0200835 |
| [27] |
Sablé S, Duarte M, Bravo D, et al. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity. Canadian J Microbiol. 2003;49(5):357–361. doi: 10.1139/w03-047 |
| [28] |
Sablé S., Duarte M., Bravo D., et al. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity // Canadian J Microbiol. 2003. Vol. 49, N 5. P. 357–361. doi: 10.1139/w03-047 |
| [29] |
Massip C, Branchu P, Bossuet-Greif N, et al. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathogens. 2019;15(9):e1008029. doi: 10.1371/journal.ppat.1008029 |
| [30] |
Massip C., Branchu P., Bossuet-Greif N., et al. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917 // PLoS Pathogens. 2019. Vol. 15, N 9. P. e1008029. doi: 10.1371/journal.ppat.1008029 |
| [31] |
Poey ME, Azpiroz MF, Laviña M. Comparative analysis of chromosome-encoded microcins. Antimicrobial agents and chemotherapy. 2006. Vol. 50, N 4. P. 1411–1418. doi: 10.1128/AAC.50.4.1411-1418.2006 |
| [32] |
Poey M.E., Azpiroz M.F., Laviña M. Comparative analysis of chromosome-encoded microcins // Antimicrobial agents and chemotherapy. 2006. Vol. 50, N 4. P. 1411–1418. doi: 10.1128/AAC.50.4.1411-1418.2006 |
| [33] |
Zschüttig A, Zimmermann K, Blom J, et al. Identification and Characterization of Microcin S, a New Antibacterial Peptide Produced by Probiotic Escherichia coli G3/10. PLoS One. 2012;7(3):e33351. doi: 10.1371/journal.pone.0033351 |
| [34] |
Zschüttig A., Zimmermann K., Blom J., et al. Identification and Characterization of Microcin S, a New Antibacterial Peptide Produced by Probiotic Escherichia coli G3/10 // PLoS One. 2012. Vol. 7, N 3. P. e33351. doi: 10.1371/journal.pone.0033351 |
| [35] |
Lu SY, Graça T, Avillan JJ, Zhao Z, Call DR. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Appl Environ Microbiol. 2019;85(11):e00371-19. doi: 10.1128/AEM.00371-19 |
| [36] |
Lu S.Y., Graça T., Avillan J.J., Zhao Z., Call D.R. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity // Appl Environ Microbiol. 2019. Vol. 85, N 11. P. e00371-19. doi: 10.1128/AEM.00371-19 |
| [37] |
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports. 2007;24(4):708–734. doi: 10.1039/b516237h |
| [38] |
Duquesne S., Destoumieux-Garzón D., Peduzzi J., Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria // Natural Product Reports. 2007. Vol. 24, N 4. P. 708–734. doi: 10.1039/b516237h |
| [39] |
Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiology Spectrum. 2016;4(1). doi: 10.1128/microbiolspec.VMBF-0012-2015 |
| [40] |
Green E.R., Mecsas J. Bacterial secretion systems: an overview // Microbiology Spectrum. 2016. Vol. 4, N 1. doi: 10.1128/microbiolspec.VMBF-0012-2015 |
| [41] |
Smith TJ, Sondermann H, O’Toole GA. Type 1 does the two-step: type 1 secretion substrates with a functional periplasmic intermediate. J Bacteriol. 2018;200(18):e00168-18. doi: 10.1128/JB.00168-18 |
| [42] |
Smith T.J., Sondermann H., O’Toole G.A. Type 1 does the two-step: type 1 secretion substrates with a functional periplasmic intermediate // J Bacteriol. 2018. Vol. 200, N 18. P. e00168-18. doi: 10.1128/JB.00168-18 |
| [43] |
Rodríguez E, Laviña M. The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action. Antimicrob Agents Chemother. 2003;47(1):181–187. doi: 10.1128/AAC.47.1.181-187.2003 |
| [44] |
Rodríguez E., Laviña M. The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action // Antimicrob Agents Chemother. 2003. Vol. 47, N 1. P. 181–187. doi: 10.1128/AAC.47.1.181-187.2003 |
| [45] |
Yang CC, Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol.1984;158(2)757–759. doi: 10.1128/jb.158.2.757-759.1984 |
| [46] |
Yang C.C., Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential // J. Bacteriol. 1984. Vol. 158, N 2. P. 757–759. doi: 10.1128/jb.158.2.757-759.1984 |
| [47] |
Berger EA. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Nat Acad Sci USA. 1973;70(5):1514–1518. doi: 10.1073/pnas.70.5.1514 |
| [48] |
Berger E.A. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli // Proc Nat Acad Sci USA. 1973. Vol. 70, N 5. P. 1514–1518. doi: 10.1073/pnas.70.5.1514 |
| [49] |
Cairney J, Higgins CF, Booth IR. Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. J Bacteriol. 1984;160(1):22–27. doi: 10.1128/jb.160.1.22-27.1984 |
| [50] |
Cairney J., Higgins C.F., Booth I.R. Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions // J Bacteriol. 1984. Vol. 160, N 1. P. 22–27. doi: 10.1128/jb.160.1.22-27.1984 |
| [51] |
Deutscher J, Aké FM, Derkaoui M, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev. 2014;78(2):231–256. doi: 10.1128/MMBR.00001-14 |
| [52] |
Deutscher J., Aké F.M., Derkaoui M., et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions // Microbiol Mol Biol Rev. 2014. Vol. 78, N 2. P. 231–256. doi: 10.1128/MMBR.00001-14 |
| [53] |
Destoumieux-Garzón D, Thomas X, Santamaria M, et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol microbiol. 2003;49(4):1031–1041. doi: 10.1046/j.1365-2958.2003.03610.x |
| [54] |
Destoumieux-Garzón D., Thomas X., Santamaria M., et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli // Mol microbiol. 2003. Vol. 49, N 4. P. 1031–1041. doi: 10.1046/j.1365-2958.2003.03610.x |
| [55] |
Morin N, Lanneluc I, Connil N, et al. Mechanism of nactericidal activity of microcin L in Escherichia coli and Salmonella enterica. Antimicrob agents and chemother. 2011;55(3):997–1007. doi: 10.1128/AAC.01217-10 |
| [56] |
Morin N., Lanneluc I., Connil N., et al. Mechanism of nactericidal activity of microcin L in Escherichia coli and Salmonella enterica // Antimicrob agents and chemother. 2011. Vol. 55, N 3. P. 997–1007. doi: 10.1128/AAC.01217-10 |
| [57] |
Nicholls DG, Ferguson SJ. Cellular Bioenergetics, раздел 9.6.1. Ionophores and cells. In: Nicholls DG, Ferguson SJ. Bioenergetics. 4th ed. Elsevier; 2013. |
| [58] |
Nicholls D.G., Ferguson S.J. Cellular Bioenergetics, раздел 9.6.1. Ionophores and cells. In: Nicholls D.G., Ferguson S.J. Bioenergetics. 4th ed. Elsevier, 2013. |
| [59] |
Palmer JD, Mortzfeld BM, Piattelli E, et al. A class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae. ACS Infect Dis. 2020;6(4):672–679. doi: 10.1021/acsinfecdis.9b00302 |
| [60] |
Palmer J.D., Mortzfeld B.M., Piattelli E., et al. A class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae // ACS Infect Dis. 2020. Vol. 6, N 4. P. 672–679. doi: 10.1021/acsinfecdis.9b00302 |
| [61] |
Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–12286. doi: 10.3390/molecules171012276 |
| [62] |
Seo M.D., Won H.S., Kim J.H., Mishig-Ochir T., Lee B.J. Antimicrobial peptides for therapeutic applications: a review // Molecules. 2012. Vol. 17, N 10. P. 12276–12286. doi: 10.3390/molecules171012276 |
| [63] |
Negash KH, Norris JKS, Hodgkinson JT. Siderophore — antibiotic conjugate design: new drugs for bad bugs? Molecules. 2019;24(18):3314. doi: 10.3390/molecules24183314 |
| [64] |
Negash K.H., Norris J.K.S., Hodgkinson J.T. Siderophore — antibiotic conjugate design: new drugs for bad bugs? // Molecules. 2019. Vol. 24, N 18. P. 3314. doi: 10.3390/molecules24183314 |
| [65] |
Azpiroz MF, Laviña M. Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother. 2007;51(7):2412–2419. doi: 10.1128/AAC.01606-06 |
| [66] |
Azpiroz M.F., Laviña M. Modular structure of microcin H47 and colicin V // Antimicrob Agents Chemother. 2007. Vol. 51, N 7. P. 2412–2419. doi: 10.1128/AAC.01606-06 |
| [67] |
Reis A. Challenges in chemical and recombinant peptide production processes [Internet]. ProteoBlog by Proteogenix [cited 2023 Apr 20]. Available from: https://www.proteogenix.science/scientific-corner/peptide-synthesis/challenges-in-chemical-and-recombinant-peptide-production-processes/. |
| [68] |
Reis A. Challenges in chemical and recombinant peptide production processes [интернет]. ProteoBlog by Proteogenix [дата обращения: 20.04.2023]. Доступ по ссылке: https://www.proteogenix.science/scientific-corner/peptide-synthesis/challenges-in-chemical-and-recombinant-peptide-production-processes/. |
| [69] |
Gomez-Escribano JP, Castro JF, Razmilic V, et al. Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin. Appl Environ Microbiol. 2019;85(23):e01752–19. doi: 10.1128/AEM.01752-19 |
| [70] |
Gomez-Escribano J.P., Castro J.F., Razmilic V., et al. Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin // Appl Environ Microbiol. 2019. Vol. 85, N 23. P. e01752–19. doi: 10.1128/AEM.01752-19 |
| [71] |
Tietz JI, Schwalen CJ, Patel PS, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol. 2017;13:470–478. doi: 10.1038/nchembio.2319 |
| [72] |
Tietz J.I., Schwalen C.J., Patel P.S., et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape // Nat Chem Biol. 2017. Vol. 13. P. 470–478. doi: 10.1038/nchembio.2319 |
| [73] |
Cameron A, Zaheer R, Adator EH, et al. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins (Basel). 2019;11(8):475. doi: 10.3390/toxins11080475 |
| [74] |
Cameron A., Zaheer R., Adator E.H., et al. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater // Toxins (Basel). 2019. Vol. 11, N 8. P. 475. doi: 10.3390/toxins11080475 |
| [75] |
Palmer JD, Piattelli E, McCormick BA, et al. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis. 2018;4(1):39–45. doi: 10.1021/acsinfecdis.7b00114 |
| [76] |
Palmer J.D., Piattelli E., McCormick B.A., et al. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47 // ACS Infect Dis. 2018. Vol. 4, N 1. P. 39–45. doi: 10.1021/acsinfecdis.7b00114 |
| [77] |
Baquero F, Lanza VF, Baquero MR, et al. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol. 2019;10:2261. doi: 10.3389/fmicb.2019.02261 |
| [78] |
Baquero F., Lanza V.F., Baquero M.R., et al. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere // Front Microbiol. 2019. Vol. 10. P. 2261. doi: 10.3389/fmicb.2019.02261 |
| [79] |
de Lorenzo V. Isolation and characterization of microcin E 492 from Klebsiella pneumoniae. Arch Microbiol. 1984;139:72–75. |
| [80] |
de Lorenzo V. Isolation and characterization of microcin E 492 from Klebsiella pneumoniae // Arch Microbiol. 1984. Vol. 139. P. 72–75. |
| [81] |
Pons A-M, Delalande F, Duarte M, et al. Genetic analysis and complete primary structure of microcin L. Antimicrob Agents Chemother. 2004;48(2):505–513. doi: 10.1128/AAC.48.2.505-513.2004 |
| [82] |
Pons A.-M., Delalande F., Duarte M., et al. Genetic analysis and complete primary structure of microcin L // Antimicrob Agents Chemother. 2004. Vol. 48, N 2. P. 505–513. doi: 10.1128/AAC.48.2.505-513.2004 |
| [83] |
Laviña M, Gaggero C, Moreno F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol. 1990; 172(11):6585–6588. doi: 10.1128/jb.172.11.6585-6588.1990. |
| [84] |
Laviña M., Gaggero C., Moreno F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli // J Bacteriol. 1990. Vol. 172, N 11. P. 6585–6588. doi: 10.1128/jb.172.11.6585-6588.1990. |
| [85] |
Park MS, Kim JI, Lee I, et al. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul). 2018;26(3):242–254. doi: 10.4062/biomolther.2017.172/ |
| [86] |
Park M.S., Kim J.I., Lee I., et al. Towards the Application of Human Defensins as Antivirals // Biomol Ther (Seoul). 2018. Vol. 26, N 3. P. 242–254. doi: 10.4062/biomolther.2017.172/ |
| [87] |
Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA. 2002;99(5): 2696–2701. doi: 10.1073/pnas.052709699 |
| [88] |
Hetz C., Bono M.R., Barros L.F., Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines // Proc Natl Acad Sci USA. 2002. Vol. 99, N 5. P. 2696–2701. doi: 10.1073/pnas.052709699 |
| [89] |
Varas MA, Muñoz-Montecinos C, Kallens V, et al. Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin E492 against human colorectal cancer cells. Front Microbiol. 2020;11:405. doi: 10.3389/fmicb.2020.00405 |
| [90] |
Varas M.A., Muñoz-Montecinos C., Kallens V., et al. Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin E492 against human colorectal cancer cells // Front Microbiol. 2020. Vol. 11. P. 405. doi: 10.3389/fmicb.2020.00405 |
| [91] |
Shahnawaz M, Park K-W, Mukherjee A, Diaz-Espinoza R, Soto C. Prion-like characteristics of the bacterial protein microcin E492. Sci Rep. 2017;7(1):45720. doi: 10.1038/srep45720 |
| [92] |
Shahnawaz M., Park K.-W., Mukherjee A., Diaz-Espinoza R., Soto C. Prion-like characteristics of the bacterial protein microcin E492 // Sci Rep. 2017. Vol. 7, N 1. P. 45720. doi: 10.1038/srep45720 |
| [93] |
Aguilera P, Marcoleta A, Lobos-Ruiz P. et al. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation. Front Microbiol. 2016;7:35. doi: 10.3389/fmicb.2016.00035 |
| [94] |
Aguilera P., Marcoleta A., Lobos-Ruiz P. et al. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation // Front Microbiol. 2016. Vol. 7. P. 35. doi: 10.3389/fmicb.2016.00035 |
Eco-vector
/
| 〈 |
|
〉 |