Structure and mechanism of action of botulinum and tetanus neurotoxins: A review
Anna A. Skryabina , Ekaterina S. Golenok , Maxim M. Sobkh , Vladimir V. Nikiforov
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 118 -127.
Structure and mechanism of action of botulinum and tetanus neurotoxins: A review
Botulinum neurotoxins and tetanus neurotoxins are the strongest known toxins that cause neuroparalytic syndromes in botulism and tetanus. This review aimed to systematize scientific data on the structures and mechanism of actions of botulinum and tetanus neurotoxins. Botulinum and tetanus neurotoxins are proteins containing functional domains responsible for receptor binding, transmembrane translocation, and proteolytic cleavage of proteins required for exocytosis of synaptic vesicles and release of neurotransmitters into the synaptic cleft. The main stages of the botulinum neurotoxins and tetanus neurotoxin action include binding to the presynaptic membrane, internalization of bound toxin into the cytosol via endocytosis, translocation of the L-chain into the cytosol via the HN domain, disruption of the interchain disulfide bond with the release of the L-chain to express its catalytic activity (as a metalloprotease) in the cytosol, and selective cleavage of one or more soluble N-ethylmaleimide-sensitive factor attachment receptor complex proteins with subsequent blockade of neurotransmitter release.
botulism / Clostridium / neurotoxins / tetanus
| [1] |
Magazov RSh, Stepanov AV, Chepur SV, Savel’ev AP. Toksiny biologicheskogo proiskhozhdeniya (priroda, struktura, biologicheskie funktsii i diagnostika). Ufa; 2019. (In Russ). 348 p. |
| [2] |
Магазов Р.Ш., Степанов А.В., Чепур С.В., Савельев А.П. Токсины биологического происхождения (природа, структура, биологические функции и диагностика). Уфа, 2019. 348 с. |
| [3] |
Williams JM, Tsai B. Intracellular trafficking of bacterial toxins. Curr Opin Cell Biol. 2016;41:51–56. doi: 10.1016/j.ceb.2016.03.019 |
| [4] |
Williams J.M., Tsai B. Intracellular trafficking of bacterial toxins // Curr Opin Cell Biol. 2016. Т. 41. С. 51–56. doi: 10.1016/j.ceb.2016.03.019 |
| [5] |
Dong M, Masuyer G, Stenmark P. Botulinum and Tetanus Neurotoxins. Annu Rev Biochem. 2019;88:811–837. doi: 10.1146/annurev-biochem-013118-111654 |
| [6] |
Dong M., Masuyer G., Stenmark P. Botulinum and Tetanus Neurotoxins // Annu Rev Biochem. 2019. Vol. 88:811–837. doi: 10.1146/annurev-biochem-013118-111654 |
| [7] |
Forbes JD. Clinically Important Toxins in Bacterial Infection: Utility of Laboratory Detection. Clin Microbiol Newsl. 2020;42(20):163–170. doi: 10.1016/j.clinmicnews.2020.09.003 |
| [8] |
Forbes J.D. Clinically Important Toxins in Bacterial Infection: Utility of Laboratory Detection // Clin Microbiol Newsl. 2020. Vol. 42, N 20. P. 163–170. doi: 10.1016/j.clinmicnews.2020.09.003 |
| [9] |
Nikiforov VV. Botulinum neurotoxin is both poison and medicine: botulinum therapy and iatrogenic botulism. Epidemiology and Infectious Diseases. 2022;27(6):341–359. (In Russ). doi: 10.17816/EID192525 |
| [10] |
Никифоров В.В. Ботулинический нейротоксин: и яд, и лекарство. Ботулинотерапия и ятрогенный ботулизм // Эпидемиология и инфекционные болезни. 2022. Т. 27, № 6. С. 341–359. doi: 10.17816/EID192525 |
| [11] |
Johnson EA, Montecucco C. Botulism. Handb Clin Neurol. 2008;91:333–368. doi: 10.1016/S0072-9752(07)01511-4 |
| [12] |
Johnson E.A., Montecucco C. Botulism // Handb Clin Neurol. 2008. Vol. 91. P. 333–368. doi: 10.1016/S0072-9752(07)01511-4 |
| [13] |
Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014;12(8):535–549. 10.1038/nrmicro3295 |
| [14] |
Rossetto O., Pirazzini M., Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights // Nat Rev Microbiol. 2014. Vol. 12, N 8. P. 535–549. doi: 10.1038/nrmicro3295 |
| [15] |
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017;69(2):200–235. doi: 10.1124/pr.116.012658 |
| [16] |
Pirazzini M., Rossetto O., Eleopra R., Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology // Pharmacol Rev. 2017. Vol. 69, N 2. P. 200–235. doi: 10.1124/pr.116.012658 |
| [17] |
Eruslanov BV, Svetoch EA, Mitsevich IP, Fursova NK, Dyatlov IA. Botulism: characterization of the pathogen and the laboratory diagnostic methods. Bacteriology. 2018;3(4):47–59. (In Russ). doi: 10.20953/2500-1027-2018-4-47-59. |
| [18] |
Ерусланов Б.В., Светоч Э.А., Мицевич И.П., Фурсова Н.К., Дятлов И.А. Ботулизм: характеристика возбудителя и лабораторные методы его диагностики // Бактериология. 2018. Т. 3, № 4. С. 47–59. doi: 10.20953/2500-1027-2018-4-47-59 |
| [19] |
Nikiforov VV, Tomilin YuN, Chernobrovkinya TYa, Yankovskaya YaD, Burova SV. The difficulties of early diagnosis and treatment of botulism. The Russian Archives of Internal Medicine. 2019;9(4): 253–259. (In Russ). doi: 10.20514/2226-6704-2019-9-4-253-259 |
| [20] |
Никифоров В.В., Томилин Ю.Н., Чернобровкина Т.Я., Янковская Я.Д., Бурова С.В. Трудности ранней диагностики и лечения ботулизма // Архивъ внутренней медицины. 2019. Т. 9, № 4. С. 253–259. doi: 10.20514/2226-6704-2019-9-4-253-259 |
| [21] |
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol. 2022;96(6):1521–1539. doi: 10.1007/s00204-022-03271-9 |
| [22] |
Pirazzini M., Montecucco C., Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update // Arch Toxicol. 2022. Vol. 96, N 6. P. 1521–1539. doi: 10.1007/s00204-022-03271-9 |
| [23] |
Pappas G, Kiriaze IJ, Falagas ME. Insights into infectious disease in the era of Hippocrates. Int J Infect Dis. 2008;12:347–350. doi: 10.1016/j.ijid.2007.11.003 |
| [24] |
Pappas G., Kiriaze I.J., Falagas M.E. Insights into infectious disease in the era of Hippocrates // Int J Infect Dis. 2008. Vol. 12. P. 347–350. doi: 10.1016/j.ijid.2007.11.003 |
| [25] |
Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm Rep. 2021;70(2):1–30. doi: 10.15585/mmwr.rr7002a1 |
| [26] |
Rao A.K., Sobel J., Chatham-Stephens K., Luquez C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021 // MMWR Recomm Rep. 2021. Vol. 70, N 2. P. 1–30. doi: 10.15585/mmwr.rr7002a1 |
| [27] |
Megighian A, Pirazzini M, Fabris F, Rossetto O, Montecucco C. Tetanus and Tetanus neurotoxin: from peripheral uptake to central nervous tissue targets. J Neurochem. 2021;158:1244–1253. doi: 10.1111/jnc.15330 |
| [28] |
Megighian A., Pirazzini M., Fabris F., Rossetto O., Montecucco C. Tetanus and Tetanus neurotoxin: from peripheral uptake to central nervous tissue targets // J Neurochem. 2021. Vol. 158. P. 1244–1253. doi: 10.1111/jnc.15330 |
| [29] |
Pirazzini M, Azarnia Tehran D, Leka O, et al. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta. 2016; 1858(3):467–474. doi: 10.1016/j.bbamem.2015.08.014 |
| [30] |
Pirazzini M., Azarnia Tehran D., Leka O., et al. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments // Biochim Biophys Acta. 2016. Vol. 1858, N 3. P. 467–474. doi: 10.1016/j.bbamem.2015.08.014 |
| [31] |
Deppe J, Weisemann J, Mahrhold S, Rummel A. The 25 kDa HC-N domain of clostridial neurotoxins is indispensable for their neurotoxicity. Toxins. 2020;12:743. doi: 10.3390/toxins12120743 |
| [32] |
Deppe J., Weisemann J., Mahrhold S., Rummel A. The 25 kDa HC-N domain of clostridial neurotoxins is indispensable for their neurotoxicity // Toxins. 2020. Vol. 12. P. 743. doi: 10.3390/toxins12120743 |
| [33] |
Zhang Y, Varnum SM. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie. 2012;94:920–923. doi: 10.1016/j.biochi.2011.11.004 |
| [34] |
Zhang Y., Varnum S.M. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides // Biochimie. 2012. Vol. 94. P. 920–923. doi: 10.1016/j.biochi.2011.11.004 |
| [35] |
Surana S, Tosolini AP, Meyer IFG, et al. The travel diaries of tetanus and botulinum neurotoxins. Toxicon. 2018;147:58–67. doi: 10.1016/j.toxicon.2017.10.008 |
| [36] |
Surana S., Tosolini A.P., Meyer I.F.G., et al. The travel diaries of tetanus and botulinum neurotoxins // Toxicon. 2018. Vol. 147. P. 58–67. doi: 10.1016/j.toxicon.2017.10.008 |
| [37] |
Sleigh JN, Tosolini AP, Schiavo G. In vivo imaging of anterograde and retrograde axonal transport in rodent peripheral nerves. Methods Mol Biol. 2020;2143:271–292. doi: 10.1007/978-1-0716-0585-1_20 |
| [38] |
Sleigh J.N., Tosolini A.P., Schiavo G. In vivo imaging of anterograde and retrograde axonal transport in rodent peripheral nerves // Methods Mol Biol. 2020. Vol. 2143. P. 271–292. doi: 10.1007/978-1-0716-0585-1_20 |
| [39] |
Caleo M, Spinelli M, Colosimo F, et al. Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J Neurosci. 2018;38:10329–10337. doi: 10.1523/jneurosci.0294-18.2018 |
| [40] |
Caleo M., Spinelli M., Colosimo F., et al. Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons // J Neurosci. 2018. Vol. 38. P. 10329–10337. doi: 10.1523/jneurosci.0294-18.2018 |
| [41] |
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon. 2015;107:9–24. doi: 10.1016/j.toxicon.2015.09.009 |
| [42] |
Rummel A. The long journey of botulinum neurotoxins into the synapse // Toxicon. 2015. Vol. 107. P. 9–24. doi: 10.1016/j.toxicon.2015.09.009 |
| [43] |
Reznik AV. Controversial issues of pharmacology of botulinum toxin type A. Plastic Surgery and Aesthetic Medicine. 2021;1:77–84. (In Russ.). doi: 10.17116/plast.hirurgia202101177 |
| [44] |
Резник А.В. Спорные вопросы фармакологии ботулотоксина типа A // Пластическая хирургия и эстетическая медицина. 2021. N 1. P. 77–84. doi: 10.17116/plast.hirurgia202101177 |
| [45] |
Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–39. doi: 10.1038/35036052 |
| [46] |
Simons K., Toomre D. Lipid rafts and signal transduction // Nat Rev Mol Cell Biol. 2000. Vol. 1. P. 31–39. doi: 10.1038/35036052 |
| [47] |
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta. 2009; 1788(1):184–193. doi: 10.1016/j.bbamem.2008.09.001 |
| [48] |
Prinetti A., Loberto N., Chigorno V., Sonnino S. Glycosphingolipid behaviour in complex membranes // Biochim Biophys Acta. 2009. Vol. 1788, N 1. P. 184–193. doi: 10.1016/j.bbamem.2008.09.001 |
| [49] |
Fogolari F, Tosatto SC, Muraro L, Montecucco C. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett. 2009;583(14):2321–2325. doi: 10.1016/j.febslet.2009.06.046 |
| [50] |
Fogolari F., Tosatto S.C., Muraro L., Montecucco C. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes // FEBS Lett. 2009. Vol. 583, N 14. P. 2321–2325. doi: 10.1016/j.febslet.2009.06.046 |
| [51] |
Dong M, Masuyer G, Stenmark P. Botulinum and tetanus neurotoxins. Annu Rev Biochem. 2019;88:811–837. doi: 10.1146/annurev-biochem-013118-111654 |
| [52] |
Dong M., Masuyer G., Stenmark P. Botulinum and tetanus neurotoxins // Annu Rev Biochem. 2019. Vol. 88. P. 811–837. doi: 10.1146/annurev-biochem-013118-111654 |
| [53] |
Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol. 2008;(184):107–127. doi: 10.1007/978-3-540-74805-2_5 |
| [54] |
Lang T., Jahn R. Core proteins of the secretory machinery // Handb Exp Pharmacol. 2008. N 184. P. 107–127. doi: 10.1007/978-3-540-74805-2_5 |
| [55] |
Ramakrishnan NA, Drescher MJ, Drescher DG. The SNARE complex in neuronal and sensory cells. Mol Cell Neurosci. 2012 May; 50(1):58–69. doi: 10.1016/j.mcn.2012.03.009 |
| [56] |
Ramakrishnan N.A., Drescher M.J., Drescher D.G. The SNARE complex in neuronal and sensory cells // Mol Cell Neurosci. 2012. Vol. 50, N 1. P. 58–69. doi: 10.1016/j.mcn.2012.03.009 |
| [57] |
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: Basic facts and role in synaptic function. Eur J Neurosci. 2013;38(11): 3529–3539. doi: 10.1111/ejn.12360 |
| [58] |
Mendoza-Torreblanca J.G., Vanoye-Carlo A., Phillips-Farfán B.V., Carmona-Aparicio L., Gómez-Lira G. Synaptic vesicle protein 2A: Basic facts and role in synaptic function // Eur J Neurosci. 2013. Vol. 38, N 11. P. 3529–3539. doi: 10.1111/ejn.12360 |
| [59] |
Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development. 2010;137(20):3489–3499. doi: 10.1242/dev.053348 |
| [60] |
Chakkalakal J.V., Nishimune H., Ruas J.L., Spiegelman B.M., Sanes J.R. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons // Development. 2010. Vol. 137, N 20. P. 3489–3499. doi: 10.1242/dev.053348 |
| [61] |
Dong M, Liu H, Tepp WH, et al. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell. 2008;19(12):5226–5237. doi: 10.1091/mbc.e08-07-0765 |
| [62] |
Dong M., Liu H., Tepp W.H., et al. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons // Mol Biol Cell. 2008. Vol. 19, N 12. P. 5226–5237. doi: 10.1091/mbc.e08-07-0765 |
| [63] |
Yeh FL, Dong M, Yao J, et al. SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog. 2010;6(11):e1001207. doi: 10.1371/journal.ppat.1001207 |
| [64] |
Yeh F.L., Dong M., Yao J., et al. SV2 mediates entry of tetanus neurotoxin into central neurons // PLoS Pathog. 2010. Vol. 6, N 11. P. e1001207. doi: 10.1371/journal.ppat.1001207 |
| [65] |
Deinhardt K, Salinas S, Verastegui C, et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 2006;52:293–305. doi: 10.1016/j.neuron.2006.08.018 |
| [66] |
Deinhardt K., Salinas S., Verastegui C., et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway // Neuron. 2006. Vol. 52. P. 293–305. doi: 10.1016/j.neuron.2006.08.018 |
| [67] |
Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol. 2019;15: 691–703. doi: 10.1038/s41582-019-0257-2 |
| [68] |
Sleigh J.N., Rossor A.M., Fellows A.D., Tosolini A.P., Schiavo G. Axonal transport and neurological disease // Nat Rev Neurol. 2019. Vol. 15. P. 691–703. doi: 10.1038/s41582-019-0257-2 |
| [69] |
Montal M. Redox regulation of botulinum neurotoxin toxicity: therapeutic implications. Trends Mol Med. 2014;20:602–603. doi: 10.1016/j.molmed.2014.09.005 |
| [70] |
Montal M. Redox regulation of botulinum neurotoxin toxicity: therapeutic implications // Trends Mol Med. 2014. Vol. 20. P. 602–603. doi: 10.1016/j.molmed.2014.09.005 |
| [71] |
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and thioredoxin-thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon. 2018;147:32–37. doi: 10.1016/j.toxicon.2017.10.028 |
| [72] |
Pirazzini M., Azarnia Tehran D., Zanetti G., Rossetto O., Montecucco C. Hsp90 and thioredoxin-thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals // Toxicon. 2018. Vol. 147. P. 32–37. doi: 10.1016/j.toxicon.2017.10.028 |
| [73] |
Azarnia Tehran D, Pirazzini M, Leka O, et al. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol. 2017. 2017;19(2). doi: 10.1111/cmi.12647 |
| [74] |
Azarnia Tehran D., Pirazzini M., Leka O., et al. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals // Cell Microbiol. 2017. Vol. 19, N 2. doi: 10.1111/cmi.12647 |
| [75] |
Pirazzini M, Azarnia Tehran D, Zanetti G, et al. The thioredoxin reductase — Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon. 2015;107:32–36. doi: 10.1016/j.toxicon.2015.06.019 |
| [76] |
Pirazzini M., Azarnia Tehran D., Zanetti G., et al. The thioredoxin reductase — Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles // Toxicon. 2015. Vol. 107. P. 32–36. doi: 10.1016/j.toxicon.2015.06.019 |
| [77] |
Pirazzini M, Azarnia Tehran D, Zanetti G, et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014;8:1870–1878. doi: 10.1016/j.celrep.2014.08.017 |
| [78] |
Pirazzini M., Azarnia Tehran D., Zanetti G., et al. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins // Cell Rep. 2014. Vol. 8. P. 1870–1878. doi: 10.1016/j.celrep.2014.08.017 |
| [79] |
Zanetti G, Mattarei A, Lista F, et al. Novel small molecule inhibitors that prevent the neuroparalysis of tetanus neurotoxin. Pharmaceuticals. 2021;14(11):1134. doi: 10.3390/ph14111134 |
| [80] |
Zanetti G., Mattarei A., Lista F., et al. Novel small molecule inhibitors that prevent the neuroparalysis of tetanus neurotoxin // Pharmaceuticals. 2021. Vol. 14, N 11 P. 1134. doi: 10.3390/ph14111134 |
| [81] |
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol. 2019;21(11):e13037. doi: 10.1111/cmi.13037 |
| [82] |
Rossetto O., Pirazzini M., Lista F., Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs // Cell Microbiol. 2019. Vol. 21, N 11. P. e13037. doi: 10.1111/cmi.13037 |
| [83] |
Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–643. doi: 10.1038/nrm2002 |
| [84] |
Jahn R., Scheller R.H. SNAREs-engines for membrane fusion // Nat Rev Mol Cell Biol. 2006. Vol. 7. P. 631–643. doi: 10.1038/nrm2002 |
| [85] |
Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014;71:793–811. doi: 10.1007/s00018-013-1380-7 |
| [86] |
Pantano S., Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins // Cell Mol Life Sci. 2014. Vol. 71. P. 793–811. doi: 10.1007/s00018-013-1380-7 |
| [87] |
Rossetto O, Montecucco C. Tables of toxicity of botulinum and tetanus neurotoxins. Toxins (Basel). 2019;11(12):686. doi: 10.3390/toxins11120686 |
| [88] |
Rossetto O., Montecucco C. Tables of toxicity of botulinum and tetanus neurotoxins // Toxins (Basel). 2019. Vol. 11, N 12. P. 686. doi: 10.3390/toxins11120686 |
| [89] |
Eleopra R, Montecucco C, Devigili G, et al. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol. 2013;124:999–1004. doi: 10.1016/j.clinph.2012.11.004 |
| [90] |
Eleopra R., Montecucco C., Devigili G., et al. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study // Clin Neurophysiol. 2013. Vol. 124. P. 999–1004. doi: 10.1016/j.clinph.2012.11.004 |
| [91] |
Doxey AC, Mansfield MJ, Montecucco C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon. 2018;147:2–12. doi: 10.1016/j.toxicon.2018.02.002 |
| [92] |
Doxey A.C., Mansfield M.J., Montecucco C. Discovery of novel bacterial toxins by genomics and computational biology // Toxicon. 2018. Vol. 147. P. 2–12. doi: 10.1016/j.toxicon.2018.02.002 |
| [93] |
Montecucco C, Rasotto MB. On Botulinum neurotoxin variability. Mbio. 2015;6(1):e02131–e2214. doi: 10.1128/mBio.02131-14 |
| [94] |
Montecucco C., Rasotto M.B. On Botulinum neurotoxin variability // Mbio. 2015. Vol. 6, N 1. P. e02131–e2214. doi: 10.1128/mBio.02131-14 |
Eco-Vector
/
| 〈 |
|
〉 |