Microbial associations in human biotopes as a factor determining the occurrence of polymicrobial infections

Anatoliy P. Godovalov

Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 110 -117.

PDF
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 110 -117. DOI: 10.17816/EID317442
Reviews
review-article

Microbial associations in human biotopes as a factor determining the occurrence of polymicrobial infections

Author information +
History +
PDF

Abstract

Annually, data are accumulating on the involvement of opportunistic microorganisms in the development of inflammatory diseases in humans, maintaining a chronic inflammatory response and, thus, adapting to the conditions of existence in the biotopes of the human body. This review provides information on the interactions of microorganisms of medical importance, which affects the virulence of both opportunistic pathogens and “classical” pathogens, which probably underlie the chronicity of infection and inflammation. Often, opportunistic pathogenic species cannot fully realize their pathogenic potential, which is observed in numerous cases under conditions of microbial symbiosis. Thus, a revision of approaches to interpreting the results of microbiological methods is necessary, which takes into account the functional activity of the total microflora and the search for individual extrachromosomal genetic elements as a marker of the pathogenicity of microorganisms.

Keywords

conditionally pathogenic microorganisms / infection / microbial symbiosis / pathogenicity

Cite this article

Download citation ▾
Anatoliy P. Godovalov. Microbial associations in human biotopes as a factor determining the occurrence of polymicrobial infections. Epidemiology and Infectious Diseases, 2023, 28(2): 110-117 DOI:10.17816/EID317442

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shkarin VV, Blagonravova AS, Chubukova ОА. Epidemiological approach to the evaluation of combined infectious diseases. Epidemiology and infectious diseases. Current items. 2016;(6):67–75. (In Russ).

[2]

Шкарин В.В., Благонравова А.С., Чубукова О.А. Эпидемиологический подход к изучению сочетанной инфекционной патологии // Эпидемиология и инфекционные болезни. Актуальные вопросы. 2016. № 6. С. 67–75.

[3]

Gintsburg AL, Il’ina TS, Romanova IuM. “Quorum sensing” or social behavior of bacteria. Journal of Microbiology Epidemiology Immunobiology. 2003;(5):86–93. (In Russ).

[4]

Гинцбург А.Л., Ильина Т.С., Романова Ю.М. «Quorum sensing» или социальное поведение бактерий // Журнал микробиологии, эпидемиологии и иммунобиологии. 2003. № 5. С. 86–93.

[5]

Bukharin OV. Symbiotic interactions of microorganisms during infection. Journal of Microbiology Epidemiology Immunobiology. 2013;(1):93–97. (In Russ).

[6]

Бухарин О.В. Симбиотические взаимоотношения микроорганизмов при инфекции // Журнал микробиологии, эпидемиологии и иммунобиологии. 2013. № 1. С. 93–97.

[7]

Bel’skiĬ VV, Shatalova EV. The reciprocal effect of the causative agents in a mixed infection in burn injury. Journal of Microbiology Epidemiology Immunobiology. 1999;(4):3–7. (In Russ).

[8]

Бельский В.В., Шаталова Е.В. Взаимное влияние возбудителей при смешанной инфекции ожоговой травмы // Журнал микробиологии, эпидемиологии и иммунобиологии. 1999. № 4. С. 3–7.

[9]

Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000. 2015;69(1):18–27. doi: 10.1111/prd.12087

[10]

Roberts F.A., Darveau R.P. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis // Periodontol 2000. 2015. Vol. 69, N 1. P. 18–27. doi: 10.1111/prd.12087

[11]

Janda JM, Abbott SL. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev. 2021;34(2):e00174-20. doi: 10.1128/CMR.00174-20

[12]

Janda J.M., Abbott S.L. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes // Clin Microbiol Rev. 2021. Vol. 34, N 2. P. e00174-20. doi: 10.1128/CMR.00174-20

[13]

Rodriguez-Medina N, Barrios-Camacho H. Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect. 2019;8(1):973–988. doi: 10.1080/22221751.2019.1634981

[14]

Rodriguez-Medina N., Barrios-Camacho H., Duran-Bedolla J., Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans // Emerg Microbes Infect. 2019. Vol. 8, N 1. P. 973–988. doi: 10.1080/22221751.2019.1634981

[15]

Hajjar R, Ambaraghassi G, Sebajang H, et al. Raoultella ornithinolytica: emergence and resistance. Infect Drug Resist. 2020;13:1091–1104. doi: 10.2147/IDR.S191387

[16]

Hajjar R., Ambaraghassi G., Sebajang H., et al. Raoultella ornithinolytica: emergence and resistance. Infect Drug Resist // 2020. Vol. 13. P. 1091–1104. doi: 10.2147/IDR.S191387

[17]

Keyes J, Johnson EP, Epelman M, et al. Leclercia adecarboxylata: an emerging pathogen among pediatric infections. Cureus. 2020; 12:e8049. doi: 10.7759/cureus.8049

[18]

Keyes J., Johnson E.P., Epelman M., et al. Leclercia adecarboxylata: an emerging pathogen among pediatric infections // Cureus. 2020. Vol. 12. P. e8049. doi: 10.7759/cureus.8049

[19]

Jun J-B. Klebsiella pneumoniae liver abscess. Infect Chemother. 2018;50(3):210–218. doi: 10.3947/ic.2018.50.3.210

[20]

Jun J.-B. Klebsiella pneumoniae liver abscess // Infect Chemother. 2018. Vol. 50, N 3. P. 210–218. doi: 10.3947/ic.2018.50.3.210

[21]

Rashid T, Ebringer A. Rheumatoid arthritis is linked to Proteus — the evidence. Clin Rheumatol. 2007;26(7):1036–1043. doi: 10.1007/s10067-006-0491-z

[22]

Rashid T., Ebringer A. Rheumatoid arthritis is linked to Proteus — the evidence // Clin Rheumatol. 2007. Vol 26, N 7. P. 1036–1043. doi: 10.1007/s10067-006-0491-z

[23]

Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi: 10.1080/21505594.2021.1878688

[24]

Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence // 2021. Vol. 12, N 1. P. 547–569. doi: 10.1080/21505594.2021.1878688

[25]

Laux C, Peschel A, Krismer B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol Spectr. 2019;7(2). doi: 10.1128/microbiolspec.GPP3-0029-2018

[26]

Laux C., Peschel A., Krismer B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members // Microbiol Spectr. 2019. Vol. 7, N 2. doi: 10.1128/microbiolspec.GPP3-0029-2018

[27]

Rasigade J-P, Dumitrescu O, Lina G. New epidemiology of Staphylococcus aureus infections. Clin Microbiol Infect. 2014; 20(7):587–588. doi: 10.1111/1469-0691.12718

[28]

Rasigade J.-P., Dumitrescu O., Lina G. New epidemiology of Staphylococcus aureus infections // Clin Microbiol Infect. 2014. Vol. 20, N 7. P. 587–588. doi: 10.1111/1469-0691.12718

[29]

Tong SY, Davis JS, Eichenberger E., et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14

[30]

Tong S.Y., Davis J.S., Eichenberger E., et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management // Clin Microbiol Rev. 2015. Vol. 28, N 3. P. 603–661. doi: 10.1128/CMR.00134-14

[31]

Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27(3):419–440. doi: 10.1128/CMR.00092-13

[32]

Achermann Y., Goldstein E.J., Coenye T., Shirtliff M.E. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen // Clin Microbiol Rev. 2014. Vol. 27, N 3. P. 419–440. doi: 10.1128/CMR.00092-13

[33]

Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine Microbiota: Residents, Tourists, or Invaders? Front Immunol. 2018;9(208). doi: 10.3389/fimmu.2018.00208

[34]

Baker J.M., Chase D.M., Herbst-Kralovetz M.M. Uterine Microbiota: Residents, Tourists, or Invaders? // Front Immunol. 2018. Vol. 9. P. 208. doi: 10.3389/fimmu.2018.00208

[35]

Godovalov AP, Karpunina NS, Karpunina TI. Moraxella osloensis as a part of genital tract microbiota in infertility: incidental findings or pathology markers? Journal of Microbiology Epidemiology Immunobiology. 2021;98(1):28–35. (In Russ). doi: 10.36233/0372-9311-53

[36]

Годовалов А.П., Карпунина Н.С., Карпунина Т.И. Moraxella osloensis в микробиоте репродуктивного тракта при бесплодии: случайные находки или маркеры патологии? // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 1. С. 28–35. doi: 10.36233/0372-9311-53

[37]

Sheppard SK. Strain wars and the evolution of opportunistic pathogens. Curr Opin Microbiol. 2022;67:102138. doi: 10.1016/j.mib.2022.01.009

[38]

Sheppard S.K. Strain wars and the evolution of opportunistic pathogens // Curr Opin Microbiol. 2022. Vol. 67. P. 102138. doi: 10.1016/j.mib.2022.01.009

[39]

Valm AM. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. J Mol Biol. 2019;431(16):2957–2969. doi: 10.1016/j.jmb.2019.05.016

[40]

Valm A.M. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease // J Mol Biol. 2019. Vol. 431, N 16. P. 2957–2969. doi: 10.1016/j.jmb.2019.05.016

[41]

Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349. doi: 10.1038/nature09074

[42]

Iwase T., Uehara Y., Shinji H., et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization // Nature. 2010. Vol. 465, N 7296. P. 346–349. doi: 10.1038/nature09074

[43]

Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2015;535(7613):511–516. doi: 10.1038/nature18634

[44]

Zipperer A., Konnerth M.C., Laux C., et al. Human commensals producing a novel antibiotic impair pathogen colonization // Nature. 2015. Vol. 535, N 7613. P. 511–516. doi: 10.1038/nature18634

[45]

Uehara Y, Kikuchi K, Nakamura T, et al. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillinresistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis. 2001;32(10):1408–1413. doi: 10.1086/320179

[46]

Uehara Y., Kikuchi K., Nakamura T., et al. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillinresistant Staphylococcus aureus colonization of oral cavities in newborns // Clin Infect Dis. 2001. Vol. 32, N 10. P. 1408–1413. doi: 10.1086/320179

[47]

Uehara Y, Nakama H, Agematsu K, et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J Hosp Infect. 2000;44(2):127–133. doi: 10.1053/jhin.1999.0680

[48]

Uehara Y., Nakama H., Agematsu K., et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp // J Hosp Infect. 2000. Vol. 44, N 2. P. 127–133. doi: 10.1053/jhin.1999.0680

[49]

Wollenberg MS, Claesen J, Escapa IF, et al. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio. 2014;5(4):e01286-14. doi: 10.1128/mBio.01286-14

[50]

Wollenberg M.S., Claesen J., Escapa I.F., et al. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation // mBio. 2014. Vol. 5, N 4. P. e01286-14. doi: 10.1128/mBio.01286-14

[51]

Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol. 2019;9:94. doi: 10.3389/fcimb.2019.00094

[52]

Salvadori G., Junges R., Morrison D.A., Petersen F.C. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications // Front Cell Infect Microbiol. 2019. Vol. 9. P. 94. doi: 10.3389/fcimb.2019.00094

[53]

Kilian M, Poulsen K, Blomqvist T, et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One. 2008; 3(7):e2683. doi: 10.1371/journal.pone.0002683

[54]

Kilian M., Poulsen K., Blomqvist T., et al. Evolution of Streptococcus pneumoniae and its close commensal relatives // PLoS One. 2008. Vol. 3, N 7. P. e2683. doi: 10.1371/journal.pone.0002683

[55]

Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi: 10.1038/s41579-018-0036-x

[56]

Martens E.C., Neumann M., Desai M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier // Nat Rev Microbiol. 2018. Vol. 16, N 8. P. 457–470. doi: 10.1038/s41579-018-0036-x

[57]

Deriu E, Liu JZ, Pezeshki M, Edwards RA, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14(N):26–37. doi: 10.1016/j.chom.2013.06.007

[58]

Deriu E., Liu J.Z., Pezeshki M., et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron // Cell Host Microbe. 2013. Vol. 14, N 1. P. 26–37. doi: 10.1016/j.chom.2013.06.007

[59]

Maltby R, Leatham-Jensen MP, Gibson T, et al. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PloS one. 2013;8(1):e53957. doi: 10.1371/journal.pone.0053957

[60]

Maltby R., Leatham-Jensen M.P., Gibson T., et al. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine // PloS One. 2013. Vol. 8, N 1. P. e53957. doi: 10.1371/journal.pone.0053957

[61]

Deasy AM, Guccione E, Dale AP, et al. Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study. Clin Infect Dis. 2015;60(10):1512–1520. doi: 10.1093/cid/civ098

[62]

Deasy A.M., Guccione E., Dale A.P., et al. Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study // Clin Infect Dis. 2015. Vol. 60, N 10. P. 1512–1520. doi: 10.1093/cid/civ098

[63]

Kim WJ, Higashi D, Goytia M, et al. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe. 2019;26(2):228–239.e8. doi: 10.1016/j.chom.2019.07.003

[64]

Kim W.J., Higashi D., Goytia M., et al. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism // Cell Host Microbe. 2019. Vol. 26, N 2. P. 228–239.e8. doi: 10.1016/j.chom.2019.07.003

[65]

Breshears LM, Edwards VL, Ravel J, Peterson ML. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol. 2015;15:276. doi: 10.1186/s12866-015-0608-0

[66]

Breshears L.M., Edwards V.L., Ravel J., Peterson M.L. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model // BMC Microbiol. 2015. Vol. 15. P. 276. doi: 10.1186/s12866-015-0608-0

[67]

Wyatt TD, Greer A. The influence of growth medium on the interactions between Bordetella pertussis and Staphylococcus aureus. J Med Microbiol. 1976;9(2):243–246. doi: 10.1099/00222615-9-2-243

[68]

Wyatt T.D., Greer A. The influence of growth medium on the interactions between Bordetella pertussis and Staphylococcus aureus // J Med Microbiol. 1976. Vol. 9, N 2. P. 243–246. doi: 10.1099/00222615-9-2-243

[69]

Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res. 2019;29(6):961–968. doi: 10.1101/gr.241299.118

[70]

Antipov D., Raiko M., Lapidus A., Pevzner P.A. Plasmid detection and assembly in genomic and metagenomic data sets // Genome Res. 2019. Vol. 29, N 6. P. 961–968. doi: 10.1101/gr.241299.118

[71]

Pellow D, Zorea A, Probst M, et al. SCAPP: an algorithm for improved plasmid assembly in metagenomes. Microbiome. 2021;9(1):144. doi: 10.1186/s40168-021-01068-z

[72]

Pellow D., Zorea A., Probst M., et al. SCAPP: an algorithm for improved plasmid assembly in metagenomes // Microbiome. 2021. Vol. 9, N 1. P. 144. doi: 10.1186/s40168-021-01068-z

[73]

Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. doi: 10.3389/fcimb.2012.00104

[74]

Ottman N., Smidt H., de Vos W.M., Belzer C. The function of our microbiota: who is out there and what do they do? // Front Cell Infect Microbiol. 2012. Vol. 2. P. 104. doi: 10.3389/fcimb.2012.00104

[75]

Ng HM, Kin LX, Dashper SG, et al. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog. 2016;94:60–69. doi: 10.1016/j.micpath.2015.10.022

[76]

Ng H.M., Kin L.X., Dashper S.G., et al. Bacterial interactions in pathogenic subgingival plaque // Microb Pathog. 2016. Vol. 94. P. 60–69. doi: 10.1016/j.micpath.2015.10.022

[77]

Kin LX, Butler CA, Slakeski N, et al. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol. 2020;12(1):1808750. doi: 10.1080/20002297.2020.1808750

[78]

Kin L.X., Butler C.A., Slakeski N., et al. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola // J Oral Microbiol. 2020. Vol. 12, N 1. P. 1808750. doi: 10.1080/20002297.2020.1808750

[79]

Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci. 2022;9:866854. doi: 10.3389/fmolb.2022.866854

[80]

Cuthbert B.J., Hayes C.S., Goulding C.W. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors // Front Mol Biosci. 2022. Vol. 9. P. 866854. doi: 10.3389/fmolb.2022.866854

[81]

Morou-Bermudez E, Elias-Boneta A, Billings RJ, et al. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol. 2011;56(11):1282–1289. doi: 10.1016/j.archoralbio.2011.04.015

[82]

Morou-Bermudez E., Elias-Boneta A., Billings R.J., et al. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors // Arch Oral Biol. 2011. Vol. 56, N 11. P. 1282–1289. doi: 10.1016/j.archoralbio.2011.04.015

RIGHTS & PERMISSIONS

Eco-vector

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/