Molecular bases of the interaction of Mycobacteria tuberculosis complex and anti-tuberculosis drugs: Current state of the problem and its epidemiological significance
Yuri N. Khomyakov , Darya D. Zvyagintseva , Tatiana I. Khomyakova
Epidemiology and Infectious Diseases ›› 2023, Vol. 28 ›› Issue (2) : 78 -97.
Molecular bases of the interaction of Mycobacteria tuberculosis complex and anti-tuberculosis drugs: Current state of the problem and its epidemiological significance
According to the World Health Organization Global Tuberculosis Report, published in 2022, tuberculosis and its drug-resistant forms are on the rise for the first time in recent years. The ability to become immune to anti-tuberculosis drugs is a fundamental feature of the tuberculosis agent. In some cases, tuberculosis develops a transient resistance to antibacterial drugs based on a combination of adaptive biological properties of the mycobacterium without altering the genetic apparatus. This phenomenon is called drug-induced tolerance. Its development is associated with the slowing or altering of bacterial metabolism, increasing the thickness of the cell wall, activation of specific molecular pumps, and removal of medicinal substances from outside the cell. The same and some other mechanisms are involved in the development of another phenomenon — drug resistance, which is associated with inherited changes in the genetic apparatus of mycobacterium. The review is devoted to the molecular bases of the interaction of mycobacterium tuberculosis with anti-tuberculosis drugs and its epidemiological significance.
antitubercular agents / drug tolerance / drug resistance / mycobacteria
| [1] |
Paulson T. Epidemiology: a mortal foe. Nature. 2013;502(7470): S2–S3. doi: https://doi.org/10.1038/502S2a |
| [2] |
Paulson T. Epidemiology: a mortal foe // Nature. 2013. Vol. 502, N 7470. P. S2–S3. doi: 10.1038/502S2a |
| [3] |
Global tuberculosis report 2022. Geneva: World Health Organization; 2022. 52 p. |
| [4] |
Global tuberculosis report 2022. Geneva: World Health Organization, 2022. 52 p. |
| [5] |
Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization; 2016. 32 p. URL: https://www.who.int/publications/i/item/9789241509763. |
| [6] |
Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization, 2016. 32 p. URL: https://www.who.int/publications/i/item/9789241509763. |
| [7] |
Hatfull GF. Actinobacteriophages: Genomics, Dynamics, and Applications. Annu Rev Virol. 2020;7(1):37–61. doi: 10.1146/annurev-virology-122019-070009 |
| [8] |
Hatfull G.F. Actinobacteriophages: Genomics, Dynamics, and Applications // Annu Rev Virol. 2020. Vol. 7, N 1. P. 37–61. doi: 10.1146/annurev-virology-122019-070009 |
| [9] |
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(4):202–213. doi: 10.1038/nrmicro.2018.8 |
| [10] |
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis // Nat Rev Microbiol. 2018. Vol. 16, N 4. P. 202–213. doi: 10.1038/nrmicro.2018.8 |
| [11] |
Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–1182. doi: 10.1038/ng.2744 |
| [12] |
Comas I., Coscolla M., Luo T., et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans // Nat Genet. 2013. Vol. 45, N 10. P. 1176–1182. doi: 10.1038/ng.2744 |
| [13] |
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol. 2014;26(6):431–444. doi: 10.1016/j.smim.2014.09.012 |
| [14] |
Coscolla M., Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis // Semin Immunol. 2014. Vol. 26, N 6. P. 431–444. doi: 10.1016/j.smim.2014.09.012 |
| [15] |
Coscolla M, Gagneux S, Menardo F, et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb Genom. 2021;7(2):000477. doi: 10.1099/mgen.0.000477 |
| [16] |
Coscolla M., Gagneux S., Menardo F., et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history // Microb Genom. 2021. Vol. 7, N 2. P. 000477. doi: 10.1099/mgen.0.000477 |
| [17] |
Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet. 2018;50(6): 849–856. doi: 10.1038/s41588-018-0117-9 |
| [18] |
Holt K.E., McAdam P., Thai P.V.K., et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam // Nat Genet. 2018. Vol. 50, N 6. P. 849–856. doi: 10.1038/s41588-018-0117-9 |
| [19] |
Firdessa R, Berg S, Hailu E, et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19(3):460–463. doi: 10.3201/eid1903.120256 |
| [20] |
Firdessa R., Berg S., Hailu E., et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia // Emerg Infect Dis. 2013. Vol. 19, N 3. P. 460–463. doi: 10.3201/eid1903.120256 |
| [21] |
Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45(7):784–790. doi: 10.1038/ng.2656 |
| [22] |
Ford C.B., Shah R.R., Maeda M.K., et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis // Nat Genet. 2013. Vol. 45, N 7. P. 784–790. doi: 10.1038/ng.2656 |
| [23] |
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev. 2020;34(1):e00141-20. doi: 10.1128/CMR.00141-20 |
| [24] |
Goossens S.N., Sampson S.L., Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis // Clin Microbiol Rev. 2020. Vol. 34, N 1. P. e00141-20. doi: 10.1128/CMR.00141-20 |
| [25] |
Grace AG, Mittal A, Jain S, et al. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Systematic Review. 2018(1): CD012918. doi: 10.1002/14651858.CD012918 |
| [26] |
Grace A.G., Mittal A., Jain S., et al. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis // Cochrane Database of Systematic Reviews. 2018, Issue 1. P. CD012918. doi: 10.1002/14651858.CD012918 |
| [27] |
Rossiiskoe obshchestvo ftiziatrov, Assotsiatsiya ftiziatrov. Tuberculosis in adults. Clinical guidelines. Мoscow; 2022. 151 p. (In Russ). |
| [28] |
Общероссийская общественная организация «Российское общество фтизиатров», Национальная ассоциация некоммерческих организаций фтизиатров «Ассоциация фтизиатров». Туберкулёз у взрослых. Клинические рекомендации. М., 2022. 151 с. |
| [29] |
Akalu T, Muchie K, Muchie G. Time to sputum culture conversion and its determinants among Multi-drug resistant Tuberculosis patients at public hospitals of the Amhara Regional State: A multicenter retrospective follow up study. PLoS One. 2018;13(6):e0199320. doi: 10.1371/journal.pone.0199320 |
| [30] |
Akalu T., Muchie K., Muchie G. Time to sputum culture conversion and its determinants among Multi-drug resistant Tuberculosis patients at public hospitals of the Amhara Regional State: A multicenter retrospective follow up study // PLoS One. 2018. Vol. 13, N 6. P. e0199320. doi: 10.1371/journal.pone.0199320 |
| [31] |
Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17:39–49. doi: 10.1016/S1473-3099(16)30274-2 |
| [32] |
Boeree M.J., Heinrich N., Aarnoutse R., et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial // Lancet Infect Dis. 2017. Vol. 17. P. 39–49. doi: 10.1016/S1473-3099(16)30274-2 |
| [33] |
Afzal A, Rathore R, Butt NF, et al. Efficacy of vitamin D supplementation in achieving an early Sputum Conversion in Smear positive Pulmonary Tuberculosis. Pak J Med Sci. 2018;34:849–854. doi: 10.12669/pjms.344.14397 |
| [34] |
Afzal A., Rathore R., Butt N.F., et al. Efficacy of vitamin D supplementation in achieving an early Sputum Conversion in Smear positive Pulmonary Tuberculosis // Pak J Med Sci. 2018. Vol. 34. P. 849–854. doi: 10.12669/pjms.344.14397 |
| [35] |
Musteikienė G, Miliauskas S, Zaveckienė J, et al. Factors associated with sputum culture conversion in patients with pulmonary tuberculosis. Medicina (Kaunas). 2017;53(6):386–393. doi: 10.1016/j.medici.2018.01.005 |
| [36] |
Musteikienė G., Miliauskas S., Zaveckienė J., et al. Factors associated with sputum culture conversion in patients with pulmonary tuberculosis // Medicina (Kaunas). 2017. Vol. 53, N 6. P. 386–393. doi: 10.1016/j.medici.2018.01.005 |
| [37] |
Barr DA, Kamdolozi M, Nishihara Y, et al. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB. Tuberculosis (Edinb). 2016;98:110–115. doi: 10.1016/j.tube.2016.03.001 |
| [38] |
Barr D.A., Kamdolozi M., Nishihara Y., et al. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB // Tuberculosis (Edinb). 2016. Vol. 98. P. 110–115. doi: 10.1016/j.tube.2016.03.001 |
| [39] |
Burger DA, Schall R. Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research. Stat Med. 2018;37(4):544–556. doi: 10.1002/sim.7529 |
| [40] |
Burger D.A., Schall R. Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research // Stat Med. 2018. Vol. 37, N 4. P. 544–556. doi: 10.1002/sim.7529 |
| [41] |
Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17(7):441–448. doi: 10.1038/s41579-019-0196-3 |
| [42] |
Balaban N.Q., Helaine S., Lewis K., et al. Definitions and guidelines for research on antibiotic persistence // Nat Rev Microbiol. 2019. Vol. 17, N 7. P. 441–448. doi: 10.1038/s41579-019-0196-3 |
| [43] |
Trastoy R, Manso T, Fernandez-Garcia L, et al. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin Microbiol Rev. 2018;31(4):e00023-18. doi: 10.1128/CMR.00023-18 |
| [44] |
Trastoy R., Manso T., Fernandez-Garcia L., et al. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments // Clin Microbiol Rev. 2018. Vol. 31, N 4. P. e00023-18. doi: 10.1128/CMR.00023-18 |
| [45] |
Gollan B, Grabe G, Michaux C, Helaine S. Bacterial persisters and infection: past, present, and progressing. Annu Rev Microbiol. 2019;73:359–385. doi: 10.1146/annurev-micro-020518-115650 |
| [46] |
Gollan B., Grabe G., Michaux C., Helaine S. Bacterial persisters and infection: past, present, and progressing // Annu Rev Microbiol. 2019. Vol. 73. P. 359–385. doi: 10.1146/annurev-micro-020518-115650 |
| [47] |
Hegde SR. Computational identification of the proteins associated with quorum sensing and biofilm formation in Mycobacterium tuberculosis. Front Microbiol. 2020;10:3011. doi: 10.3389/fmicb.2019.03011 |
| [48] |
Hegde S.R. Computational identification of the proteins associated with quorum sensing and biofilm formation in Mycobacterium tuberculosis // Front Microbiol. 2020. Vol. 10. P. 3011. doi: 10.3389/fmicb.2019.03011 |
| [49] |
Brauner A, Fridman O, Gefen O, et al. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320−330. doi: 10.1038/nrmicro.2016.34 |
| [50] |
Brauner A., Fridman O., Gefen O., et al. Distinguishing between resistance, tolerance and persistence to antibiotic treatment // Nat Rev Microbiol. 2016. Vol. 14, N 5. P. 320−330. doi: 10.1038/nrmicro.2016.34 |
| [51] |
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis. 2021;74:101574. doi: 10.1016/j.cimid.2020.101574 |
| [52] |
Khawbung J.L., Nath D., Chakraborty S. Drug resistant Tuberculosis: A review // Comp Immunol Microbiol Infect Dis. 2021. Vol. 74. P. 101574. doi: 10.1016/j.cimid.2020.101574 |
| [53] |
Briffotaux J, Liu S, Gicquel B. Genome-wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol. 2019; 1(10):249. doi: 10.3389/fmicb.2019.00249 |
| [54] |
Briffotaux J., Liu S., Gicquel B. Genome-wide Transcriptional Responses of Mycobacterium to Antibiotics // Front Microbiol. 2019. Vol. 1, N 10. P. 249. doi: 10.3389/fmicb.2019.00249 |
| [55] |
Walter ND, Dolganov GM, Garcia BJ, et al. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis. 2015;212(6):990–998. doi: 10.1093/infdis/jiv149 |
| [56] |
Walter N.D., Dolganov G.M., Garcia B.J., et al. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis // J Infect Dis. 2015. Vol. 212, N 6. P. 990–998. doi: 10.1093/infdis/jiv149 |
| [57] |
Zhou P, Wang X, Wang Z, et al. Sigma factors mediated signaling in Mycobacterium tuberculosis. Future Microbiol. 2018;13:231–240. doi: 10.2217/fmb-2017-0127 |
| [58] |
Zhou P., Wang X., Wang Z., et al. Sigma factors mediated signaling in Mycobacterium tuberculosis // Future Microbiol. 2018. Vol. 13. P. 231–240. doi: 10.2217/fmb-2017-0127 |
| [59] |
Miryala SK, Anbarasu A, Ramaiah S. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance. J Cell Biochem. 2019;120(9):14499–14509. doi: 10.1002/jcb.28711 |
| [60] |
Miryala S.K., Anbarasu A., Ramaiah S. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance // J Cell Biochem. 2019. Vol. 120, N 9. P. 14499–14509. doi: 10.1002/jcb.28711 |
| [61] |
Kumar A, Alam A, Bharadwaj P, et al. Toxin-antitoxin (TA) systems in stress survival and pathogenesis. In: Hasnain S, Ehtesham N, Grover S, editors. Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions. New Delhi: Springer; 2019. P. 257–274. doi: 10.1007/978-981-32-9413-4_15 |
| [62] |
Kumar A., Alam A., Bharadwaj P., et al. Toxin-antitoxin (TA) systems in stress survival and pathogenesis. In: Hasnain S., Ehtesham N., Grover S., editors. Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions. New Delhi: Springer, 2019. P. 257–274. doi: 10.1007/978-981-32-9413-4_15 |
| [63] |
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis. 2018;76(4):fty039. doi: 10.1093/femspd/fty039 |
| [64] |
Slayden R.A., Dawson C.C., Cummings J.E. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis // Pathog Dis. 2018. Vol. 76, N 4. P. fty039. doi: 10.1093/femspd/fty039 |
| [65] |
Tandon H, Sharma A, Sandhya S, et al. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Sci Rep. 2019;9(1):1163. doi: 10.1038/s41598-018-37473-у |
| [66] |
Tandon H., Sharma A., Sandhya S., et al. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair // Sci Rep. 2019. Vol. 9, N 1. P. 1163. doi: 10.1038/s41598-018-37473-у |
| [67] |
Gerrick ER, Barbier T, Chase MR, et al. Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response. Proc Natl Acad Sci. U S A. 2018;115(25):6464–6469. doi: 10.1073/pnas.1718003115 |
| [68] |
Gerrick E.R., Barbier T., Chase M.R., et al. Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response // Proc Natl Acad Sci. U S A. 2018. Vol. 115, N 25. P. 6464–6469. doi: 10.1073/pnas.1718003115 |
| [69] |
Machado D, Coelho T, Perdigão J, et al. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis. Front Microbiol. 2017;8:711. doi: 10.3389/fmicb.2017.00711 |
| [70] |
Machado D., Coelho T., Perdigão J., et al. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis // Front Microbiol. 2017. Vol. 8. P. 711. doi: 10.3389/fmicb.2017.00711 |
| [71] |
Li G, Zhang J, Guo Q, et al. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 2015;10:e0119013. doi: 10.1371/journal.pone.0119013 |
| [72] |
Li G., Zhang J., Guo Q., et al. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates // PLoS One. 2015. Vol. 10. P. e0119013. doi: 10.1371/journal.pone.0119013 |
| [73] |
Hicks N, Yang J, Zhang X, et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat Microbiol. 2018;3:1032–1042. doi: 10.1038/s41564-018-0218-3 |
| [74] |
Hicks N., Yang J., Zhang X., et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance // Nat Microbiol. 2018. Vol. 3. P. 1032–1042. doi: 10.1038/s41564-018-0218-3 |
| [75] |
Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization; 2021. 85 p. |
| [76] |
Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. 85 p. |
| [77] |
Zaw M, Emran N, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health. 2018;11(5):605–610. doi: 10.1016/j.jiph.2018.04.005 |
| [78] |
Zaw M., Emran N., Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis // J Infect Public Health. 2018. Vol. 11, N 5. P. 605–610. doi: 10.1016/j.jiph.2018.04.005 |
| [79] |
Louw GE, Warren RM, Gey van Pittius NC, et al. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med. 2011;184:269–276. doi: 10.1164/rccm.201011-1924OC |
| [80] |
Louw G.E., Warren R.M., Gey van Pittius N.C., et al. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux // Am J Respir Crit Care Med. 2011. Vol. 184. P. 269–276. doi: 10.1164/rccm.201011-1924OC |
| [81] |
Zhu JH, Wang BW, Pan M, et al. Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription. Nat Commun. 2018;9(1):4218. doi: 10.1038/s41467-018-06667-3 |
| [82] |
Zhu J.H., Wang B.W., Pan M., et al. Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription // Nat Commun. 2018. Vol. 9, N 1. P. 4218. doi: 10.1038/s41467-018-06667-3 |
| [83] |
Javid B, Sorrentino F, Toosky M, et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A. 2014;111(3):1132–1137. doi: 10.1073/pnas.1317580111 |
| [84] |
Javid B., Sorrentino F., Toosky M., et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance // Proc Natl Acad Sci U S A. 2014. Vol. 111, N 3. P. 1132–1137. doi: 10.1073/pnas.1317580111 |
| [85] |
Zhang L, Zhao Y, Gao Y, et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science. 2020;368(6496):1211–1219. doi: 10.1126/science.aba9102 |
| [86] |
Zhang L., Zhao Y., Gao Y., et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol // Science. 2020. Vol. 368, N 6496. P. 1211–1219. doi: 10.1126/science.aba9102 |
| [87] |
Zhu C, Liu Y, Hu L, et al. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem. 2018;293(43):16741–16750. doi: 10.1074/jbc.RA118.002693 |
| [88] |
Zhu C., Liu Y., Hu L., et al. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis // J Biol Chem. 2018. Vol. 293, N 43. P. 16741–16750. doi: 10.1074/jbc.RA118.002693 |
| [89] |
Pisu D, Provvedi R, Espinosa DM, et al. The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. Antimicrob Agents Chemother. 2017;61: e01596-17. doi: 10.1128/AAC.01596-17 |
| [90] |
Pisu D., Provvedi R., Espinosa D.M., et al. The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs // Antimicrob Agents Chemother. 2017. Vol. 61. P. e01596-17. doi: 10.1128/AAC.01596-17 |
| [91] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012; 380(9846):986–993. doi: 10.1016/S0140-6736(12)61080-0 |
| [92] |
Diacon A.H., Dawson R., von Groote-Bidlingmaier F., et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial // Lancet. 2012. Vol. 380, N 9846. P. 986–993. doi: 10.1016/S0140-6736(12)61080-0 |
| [93] |
Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun. 2014;5:3369. doi: 10.1038/ncomms4369 |
| [94] |
Koul A., Vranckx L., Dhar N., et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism // Nat Commun. 2014. Vol. 5. P. 3369. doi: 10.1038/ncomms4369 |
| [95] |
Peterson EJR, Ma S, Sherman DR, et al. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol. 2016;1(8):16078. doi: 10.1038/nmicrobiol.2016.78 |
| [96] |
Peterson E.J.R., Ma S., Sherman D.R., et al. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis // Nat Microbiol. 2016. Vol. 1, N 8. P. 16078. doi: 10.1038/nmicrobiol.2016.78 |
| [97] |
Liu J, Gefen O, Ronin I, et al. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science. 2020;367:200–204. doi: 10.1126/science.aay3041 |
| [98] |
Liu J., Gefen O., Ronin I., et al. Effect of tolerance on the evolution of antibiotic resistance under drug combinations // Science. 2020. Vol. 367. P. 200–204. doi: 10.1126/science.aay3041 |
| [99] |
Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355(6327): 826–830. doi: 10.1126/science.aaj2191 |
| [100] |
Levin-Reisman I., Ronin I., Gefen O., et al. Antibiotic tolerance facilitates the evolution of resistance // Science. 2017. Vol. 355, N 6327. P. 826–830. doi: 10.1126/science.aaj2191 |
| [101] |
Lee JJ, Lee SK, Song N, et al. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat Commun. 2019;10(1):2928. doi: 10.1038/s41467-019-10975-7 |
| [102] |
Lee J.J., Lee S.K., Song N., et al. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis // Nat Commun. 2019. Vol. 10, N 1. P. 2928. doi: 10.1038/s41467-019-10975-7 |
| [103] |
Mishra R, Kohli S, Malhotra N, et al. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. Sci Transl Med. 2019;11(518):eaaw6635. doi: 10.1126/scitranslmed.aaw6635 |
| [104] |
Mishra R., Kohli S., Malhotra N., et al. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis // Sci Transl Med. 2019. Vol. 11, N 518. P. eaaw6635. doi: 10.1126/scitranslmed.aaw6635 |
| [105] |
Gopal P, Gruber G, Dartois V, et al. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends Pharmacol Sci. 2019;4:930–940. doi: 10.1016/j.tips.2019.10.005 |
| [106] |
Gopal P., Gruber G., Dartois V., et al. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide // Trends Pharmacol Sci. 2019. Vol. 40. P. 930–940. doi: 10.1016/j.tips.2019.10.005 |
| [107] |
Conradie F, Diacon AH, Ngubane N. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020. 382;10:893–902. doi: 10.1056/NEJMoa1901814 |
| [108] |
Conradie F., Diacon A.H., Ngubane N. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis // N Engl J Med. 2020. Vol. 382, N 10. P. 893–902. doi: 10.1056/NEJMoa1901814 |
| [109] |
Vashisht R, Bhat AG, Kushwaha S, et al. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets. J Transl Med. 2014;12:263. doi: 10.1186/s12967-014-0263-5 |
| [110] |
Vashisht R., Bhat A.G., Kushwaha S., et al. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets // J Transl Med. 2014. Vol. 12. P. 263. doi: 10.1186/s12967-014-0263-5 |
| [111] |
Pule CM, Sampson SL, Warren RM. et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother. 2016;71(1):17–26. doi: 10.1093/jac/dkv316 |
| [112] |
Pule C.M., Sampson S.L., Warren R.M. et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy // J Antimicrob Chemother. 2016 Vol. 71, N 1. P. 17–26. doi: 10.1093/jac/dkv316 |
| [113] |
Naumov AG, Pavlunin AV. Mechanisms of development of medicine stability Mycobacterium tuberculosis: is there a chance to win? Pul’monologiya. 2021;31(1):100–108. (in Russ). doi: 10.18093/0869-0189-2021-31-1-100-10 |
| [114] |
Наумов А.Г., Павлунин А.В. Механизмы развития лекарственной устойчивости Mycobacterium tuberculosis: есть ли шанс победить? // Пульмонология. 2021. Т. 31, № 1. C. 100–108. doi: 10.18093/0869-0189-2021-31-1-100-108 |
| [115] |
Mishin VYu, Zavrazhnov SP, Mitronin AV, Grigor’ev YuG. Ftiziatriya: uchebnik dlya meditsinskikh vuzov. 2nd ed., revised and expanded. Мoscow: GEOTAR-Media; 2016. (In Russ). |
| [116] |
Мишин В.Ю., Завражнов С.П., Митронин А.В., Григорьев Ю.Г. Фтизиатрия: учебник для медицинских вузов. 2-е изд., испр. и доп. М.: ГЭОТАР-Медиа, 2016. |
| [117] |
Vorobjeva ОА. Tuberculous mycobacteria drug resistance — the present view on the problem. Sibirskii meditsinskii zhurnal. 2008;(2):5–8. (In Russ). |
| [118] |
Воробьева О.А. Лекарственная устойчивость микобактерий туберкулёза — современные взгляды на проблему // Сибирский медицинский журнал. 2008. № 2, С. 5–8. |
| [119] |
Torres Ortiz A, Coronel J, Vidal JR, et al. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat Commun. 2021;12(1):7312. doi: 10.1038/S41467-021-27616-7 |
| [120] |
Torres Ortiz A., Coronel J., Vidal J.R., et al. Genomic signatures of pre-resistance in Mycobacterium tuberculosis // Nat Commun. 2021. Vol. 12, N 1. P. 7312. doi: 10.1038/S41467-021-27616-7 |
| [121] |
Li J, Gao X, Luo T, et al. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerg Microbes Infect. 2014;3(1):1–5. doi: 10.1038/emi.2014.21 |
| [122] |
Li J., Gao X., Luo T., et al. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis // Emerg Microbes Infect. 2014. Vol. 3, N 1. Р. 1–5. doi: 10.1038/emi.2014.21 |
| [123] |
Chernyaeva EN. Biochemical mechanisms of Mycobacterium tuberculosis drug resistance. Vestnik SPbGU. 2012;3(2):77–91. (In Russ). |
| [124] |
Черняева Е.Н. Биохимические механизмы лекарственной устойчивости Mycobacterium tuberculosis // Вестник Санкт-Петербургского университета. Серия 3. 2012. Вып. 2. С. 77–91. |
| [125] |
Fisenko VP. Protivotuberkuleznye sredstva: printsipy deistviya, pobochnye effekty i perspektivy sozdaniya novykh lekarstvennykh preparatov. Vrach. 2006;(12):30–34. (In Russ). |
| [126] |
Фисенко В.П. Противотуберкулёзные средства: принципы действия, побочные эффекты и перспективы создания новых лекарственных препаратов // Врач. 2006. № 12. С. 30–34. |
| [127] |
Mozhokina GN, Samoylova AG, Vasilyeva IA. The problem of neurotoxicity of drugs in the treatment of tuberculosis patients. Tuberculosis and Lung Diseases. 2020;98(10):58–63. (In Russ). doi: 10.21292/2075-1230-2020-98-10-58-63 |
| [128] |
Можокина Г.Н., Самойлова А.Г., Васильева И.А. Проблема нейротоксичности лекарственных препаратов при лечении больных туберкулёзом // Туберкулёз и болезни лёгких. 2020. Т. 98, № 10. С. 58–63. doi: 10.21292/2075-1230-2020-98-10-58-63 |
| [129] |
Mozhokina GN, Samoylova AG, Zangieva ZA Nephrotoxic characteristics of anti-tuberculosis drugs. Tuberculosis and Lung Diseases. 2019;97(10):59–65. (In Russ). doi: 10.21292/2075-1230-2019-97-10-59-65 |
| [130] |
Можокина Г.Н., Самойлова А.Г., Зангиева З.А. Нефротоксические свойства противотуберкулёзных препаратов // Туберкулёз и болезни лёгких. 2019. Т. 97, № 10. С. 59–65. doi: 10.21292/2075-1230-2019-97-10-59-65 |
| [131] |
Starshinova AA, Pavlova MV, Yablonskiy PK, et al. Evolution of phthisiatry — a search for new methods and drugs effective for the treatment of tuberculosis. Prakticheskaya meditsina. 2014;83(7): 133–139. (In Russ). |
| [132] |
Старшинова А.А., Павлова М.В., Яблонский П.К., и др. Эволюция фтизиатрии — это поиск новых методов и препаратов, эффективных при лечении туберкулёза // Практическая медицина. 2014. Т. 83, № 7. С. 133–139. |
| [133] |
Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr. 2014;2(4): MGM2-0023-2013. doi: 10.1128/microbiolspec.MGM2-0023-2013 |
| [134] |
Zhang Y., Shi W., Zhang W., Mitchison D. Mechanisms of Pyrazinamide Action and Resistance // Microbiol Spectr. 2014. Vol. 2, N 4. P. MGM2-0023-2013. doi: 10.1128/microbiolspec.MGM2-0023-2013 |
| [135] |
Sysoev PG, Lyukina AN, Madatova MK. Evolyutsiya protivotuberkuleznykh preparatov. Modern science. 2020;5(1): 263–267. (In Russ). |
| [136] |
Сысоев П.Г., Люкина А.Н., Мадатова М.К. Эволюция противотуберкулёзных препаратов // Modern science. 2020. Т. 5, № 1. С. 263–267. |
| [137] |
Burmistrova IА, Samoylova АО, Tyulkova TE, et al. Drug resistance of M. tuberculosis (historical aspects, current level of knowledge). Tuberculosis and Lung Diseases. 2020;98(1):54–61. (In Russ). doi: 10.21292/2075-1230-2020-98-1-54-61 |
| [138] |
Бурмистрова И.А., Самойлова А.Г., Тюлькова Т.Е., и др. Лекарственная устойчивость M. tuberculosis (исторические аспекты, современный уровень знаний) // Туберкулёз и болезни лёгких. 2020. Т. 98, № 1. С. 54–61. doi: 10.21292/2075-1230-2020-98-1-54-61 |
| [139] |
Desjardins C, Cohen K, Munsamy V, et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet. 2016;48:544–551. doi: 10.1038/ng.3548 |
| [140] |
Desjardins C., Cohen K., Munsamy V., et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance // Nat Genet. 2016. Vol. 48. P. 544–551. doi: 10.1038/ng.3548 |
| [141] |
Ruzanov DY, Skriagina AM, Buinevich IV, et al. New regimens and new medications in the treatment of tuberculosis: keeping step? Clinical Microbiology and Antimicrobial Chemotherapy. 2021;(1): 27–42. doi: 10.36488/cmac.2021.1.27-42 |
| [142] |
Рузанов Д.Ю., Скрягина Е.М., Буйневич И.В., и др. Новые схемы и новые препараты в лечении туберкулёза: шагаем в ногу? // Клиническая микробиология и антимикробная химиотерапия. 2021. № 1. C. 27–42. doi: 10.36488/cmac.2021.1.27-42 |
| [143] |
Vyazovaya AA, Akhmedova GM, Gerasimova AA, et al. Perchlozone resistance mutations in serial isolates of Mycobacterium tuberculosis. Problems in Medical Mycology. 2020;(3):63–64. (In Russ). |
| [144] |
Вязовая А.А., Ахмедова Г.М., Герасимова А.А., и др. Мутации устойчивости в перхлозону серийных изолятов Mycobacterium tuberculosis // Проблемы медицинской микологии. 2020. № 3. С. 63–64. |
| [145] |
Khoshnood S, Goudarzi M, Taki E, et al. Bedaquiline: Current status and future perspectives. J Glob Antimicrob Resist. 2021;25: 48–59. doi: 10.1016/J.Jgar.2021.02.017 |
| [146] |
Khoshnood S., Goudarzi M., Taki E., et al. Bedaquiline: Current status and future perspectives // J Glob Antimicrob Resist. 2021. Vol. 25. P. 48–59. doi: 10.1016/J.Jgar.2021.02.017 |
| [147] |
Chesov E, Chesov D, Maurer FP, et al. Emergence of bedaquiline-resistance in a highburden country of tuberculosis. Eur Respir J. 2022;59(3):2100621. doi: 10.1183/13993003.00621-2021 |
| [148] |
Chesov E., Chesov D., Maurer F.P., et al. Emergence of bedaquiline-resistance in a high-burden country of tuberculosis // Eur Respir J. 2022. Vol. 59, N 3. P. 2100621. doi: 10.1183/13993003.00621-2021 |
| [149] |
Gomez-Gonzalez P, Perdigao J, Gomes P, et al. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep. 2021;11(1):19431. doi: 10.1038/S41598-021-98862-4 |
| [150] |
Gomez-Gonzalez P., Perdigao J., Gomes P., et al. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid // Sci Rep. 2021. Vol. 11, N 1. P. 19431. doi: 10.1038/S41598-021-98862-4 |
| [151] |
Zimenkov DV, Nosova EYu, Kulagina EV, et al. Molekulyarnye mekhanizmy ustoichivosti Mycobacterium tuberculosis k bedakvilinu i linezolidu. Molekulyarnaya diagnostika. 2017;1:496–497. (In Russ). |
| [152] |
Зименков Д.В., Носова Е.Ю., Кулагина Е.В., и др. Молекулярные механизмы устойчивости Mycobacterium tuberculosis к бедаквилину и линезолиду // Молекулярная диагностика. 2017. Т. 1. С. 496–497. |
| [153] |
Peretokina IV, Krylova LU, Antonova OV, et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. J Infect. 2020;80(5):527–535. doi: 10.1016/j.jinf.2020.01.007 |
| [154] |
Peretokina I.V., Krylova L.U., Antonova O.V., et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates // J Infect. 2020. Vol. 80, N 5. P. 527–535. doi: 10.1016/j.jinf.2020.01.007 |
| [155] |
Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759–1767. doi: 10.2147/DDDT.S164515 |
| [156] |
Hashemian S.M.R., Farhadi T., Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care // Drug Des Devel Ther. 2018. Vol. 12. P. 1759–1767. doi: 10.2147/DDDT.S164515 |
| [157] |
Fortun J, Marti-Davila P, Navas E, et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J Antimicrob Chemother. 2005;56(1):180–185. doi: 10.1093/jac/dki148 |
| [158] |
Fortun J., Marti-Davila P., Navas E., et al. Linezolid for the treatment of multidrug-resistant tuberculosis // J Antimicrob Chemother. 2005. Vol. 56, N 1. P. 180–185. doi: 10.1093/jac/dki148 |
| [159] |
Vasil’eva IA, Samoilova AG, Zimina VN, et al. Experience with linezolid used in the combination treatment of patients with tuberculosis with broad drug resistance in the pathogen. Tuberculosis and Lung Diseases. 2011;88(3):17–20. (In Russ.). |
| [160] |
Васильева И.А., Самойлова А.Г., Зимина В.Н., и др. Опыт применения линезолида в комплексном лечении больных туберкулёзом с широкой лекарственной устойчивостью возбудителя // Туберкулёз и болезни лёгких. 2011. Т. 88, № 3. С. 17–20. |
| [161] |
Richter E, Rusch-Gerdes S, Hillemann D. First Linezolid-Resistant Clinical Isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51(4):1534–1536. doi: 10.1128/AAC.01113-06 |
| [162] |
Richter E., Rusch-Gerdes S., Hillemann D. First Linezolid-Resistant Clinical Isolates of Mycobacterium tuberculosis // Antimicrob Agents Chemother. 2007. Vol. 51, N 4. P. 1534–1536. doi: 10.1128/AAC.01113-06 |
| [163] |
Zimina VN, Viktorova IB. Delamanid is a new anti-tuberculosis drug: use, limitations, and prospects. Tuberculosis and Lung Diseases. 2021;99(2):58–66. (In Russ). doi: 10.21292/2075-1230-2021-99-2-58-66 |
| [164] |
Зимина В.Н., Викторова И.Б. Деламанид — новый противотуберкулёзный препарат: применение, ограничения, перспективы // Туберкулёз и болезни лёгких. 2021. Т. 99, № 2. С. 58–66. doi: 10.21292/2075-1230-2021-99-2-58-66 |
| [165] |
Park S, Jung J, Kim J, et al. Investigation of Clofazimine Resistance and Genetic Mutations in Drug-Resistant Mycobacterium tuberculosis Isolates. J Clin Med. 2022;11(7):1927. doi: 10.3390/jcm11071927.3390/jcm11071927 |
| [166] |
Park S., Jung J., Kim J., et al. Investigation of Clofazimine Resistance and Genetic Mutations in Drug-Resistant Mycobacterium tuberculosis Isolates // J Clin Med. 2022. Vol. 11, N 7. P. 1927. doi: 10.3390/jcm11071927.3390/jcm11071927 |
| [167] |
WHO consolidated guidelines on drug-resistant tuberculosis treatment. Copenhagen: WHO Regional Office for Europe; 2019. 117 p. (In Russ). |
| [168] |
Сводное руководство ВОЗ по лечению лекарственно-устойчивого туберкулёза. Копенгаген: Европейское региональное бюро ВОЗ, 2019. 117 c. |
| [169] |
Guerrero-Bustamante CA, Dedrick RM, Garlena RA, et al. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis. mBio. 2021;12(3):e00973-21. doi: 10.1128/mBio.00973-21 |
| [170] |
Guerrero-Bustamante C.A., Dedrick R.M., Garlena R.A., et al. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis // mBio. 2021. Vol. 12, N 3. P. e00973-21. doi: 10.1128/mBio.00973-21 |
Eco-vector
/
| 〈 |
|
〉 |