Lymphocyte enzymes as an indicator of immune response activity in ixodid tick-borne borreliosis

Marina G. Avdeeva , Darya Y. Moshkova , Lyudmila P. Blazhnyaya , Elena V. Kozyreva

Epidemiology and Infectious Diseases ›› 2022, Vol. 27 ›› Issue (6) : 315 -326.

PDF
Epidemiology and Infectious Diseases ›› 2022, Vol. 27 ›› Issue (6) : 315 -326. DOI: 10.17816/EID121351
Original study articles
research-article

Lymphocyte enzymes as an indicator of immune response activity in ixodid tick-borne borreliosis

Author information +
History +
PDF

Abstract

BACKGROUND: Acute ixodid tick-borne borreliosis tends to turn into a protracted and chronic course. This suggests studying the causes of the violation of the immune status of a sick person. The central structural unit of immunity is the lymphocyte. It is known that the formation of specific T-lymphocyte subpopulations is based on the central role of IL-2, leading to the restructuring of cellular metabolic pathways. The regulation of signaling pathways and lymphocyte metabolism primarily determines disease outcomes.

AIM: This study determines the pathogenetic mechanisms of the infectious and inflammatory processes in the erythemal form of acute ixodid tick-borne borreliosis based on the study of the lymphocytic lysosomal enzyme activity, the level of IL-2, and the clinical disease manifestations.

MATERIALS AND METHODS: The main group is represented by 609 patients hospitalized at the Krasnodar City Clinical Hospital from 2010 to 2019. The study group comprised 45 patients with an erythemal form of acute ixodid tick-borne borreliosis. In the dynamics of the disease, the level of IL-2 and the cytochemical activity of acid phosphatase and non-specific alpha naphthyl esterase of lymphocytes were determined.

RESULTS: During the height of ixodid tick-borne borreliosis, a decrease in the cytochemical activity of hydrolytic enzymes of lymphocytes was noted compared with the control group. IL-2 levels had a high dispersion and were associated with clinical disease manifestations. A low level of IL-2 correlated with a decrease in the activity of alpha-naphthyl esterase lymphocytes. During the period of convalescence, there was a restoration of lymphocytic enzymatic activity and an increase in the number of cells with a pronounced activity of alpha-naphthyl esterase, typical of T-lymphocytes with killer activity.

CONCLUSION: The hydrolytic enzymes of the lysosomes of acid phosphatase and alpha-naphthyl esterase lymphocytes enable judging the intensity of intracellular metabolic processes and, combined with clinical disease symptoms and IL-2 activity, are indicators of the state of the immune process, supplementing the results of traditional immunological studies in patients with the erythema form of acute ixodid tick-borne borreliosis. The predominance of enzymatically inactive forms of T-lymphocytes in the acute period of the disease reflects a specific deficiency of T-cell immunity.

Keywords

ixodid tick-borne borreliosis / lymphocytes / lysosomes / acid phosphatase / non-specific alpha naphthyl esterase / interleukin-2

Cite this article

Download citation ▾
Marina G. Avdeeva, Darya Y. Moshkova, Lyudmila P. Blazhnyaya, Elena V. Kozyreva. Lymphocyte enzymes as an indicator of immune response activity in ixodid tick-borne borreliosis. Epidemiology and Infectious Diseases, 2022, 27(6): 315-326 DOI:10.17816/EID121351

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jutras BL, Lochhead RB, Kloos ZA, et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019;116(27):13498–13507. doi: 10.1073/pnas.1904170116

[2]

Jutras B.L., Lochhead R.B., Kloos Z.A., et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis // Proc Natl Acad Sci U S A. 2019. Vol. 116, N 27. P. 13498–13507. doi: 10.1073/pnas.1904170116

[3]

Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne). 2020;7:57. doi: 10.3389/fmed.2020.00057

[4]

Rebman A.W., Aucott J.N. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease // Front Med (Lausanne). 2020. Vol. 7. P. 57. doi: 10.3389/fmed.2020.00057

[5]

Sapozhnikova VV. Analysis of clinical, laboratory and immunological parameters in patients with chronic ixodid tick-borne borreliosis. Medical Almanac. 2020;(2):42–49. (In Russ).

[6]

Сапожникова В.В. Анализ клинико-лабораторных и иммунологическихпоказателей у больных с хроническим иксодовым клещевым боррелиозом // Медицинский альманах. 2020. № 2 (63). С. 42–49.

[7]

Moshkova DYu, Avdeeva MG, Blazhnyaya LP. Ixodic Tick-Borne Borreliosis in the Krasnodar Krai. Kuban Scientific Medical Bulletin. 2019;26(6):49–60. (In Russ). doi: 10.25207/1608-6228-2019-26-6-49-60

[8]

Мошкова Д.Ю., Авдеева М.Г., Блажняя Л.П. Иксодовый клещевой боррелиоз в Краснодарском крае // Кубанский научный медицинский вестник. 2019. Т. 26, № 6. С. 49–60. doi: 10.25207/1608-6228-2019-26-6-49-60

[9]

Skripchenko EYu, Ivanova GP, Skripchenko NV, Egorova ES. Modern concepts on the pathogenesis of neuroborreliosis. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(7):27–35. (In Russ). doi: 10.17116/jnevro202212207127

[10]

Скрипченко Е.Ю., Иванова Г.П., Скрипченко Н.В., Егорова Е.С. Современные представления о патогенезе нейроборрелиоза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122, № 7. С. 27–35. doi: 10.17116/jnevro202212207127

[11]

Avdeeva MG, Lebedev VV, Shubich MG. Infectious process and systemic inflammatory response. Nalchik: Polygraphservice and E; 2010. 328 p. (In Russ).

[12]

Авдеева М.Г., Лебедев В.В., Шубич М.Г. Инфекционный процесс и системный воспалительный ответ. Нальчик: Полиграфсервис и Е, 2010. 328 с.

[13]

Sheibak VM, Pauliukavets AYu. Biochemical heterogeneity of T-lymphocytes. Vestnik Vitebskogo Gosudarstvennogo Meditsinskogo Universiteta. 2018;17(6):7–17. doi: 10.22263/2312-4156.2018.6.7

[14]

Шейбак В.М., Павлюковец А.Ю. Биохимическая гетерогенность Т-лимфоцитов // Вестник Витебского государственного медицинского университета. 2018. Т. 17, № 6. С. 7–17. doi: 10.22263/2312-4156.2018.6.7

[15]

Geltink RIK, Kyle RL, Pearce EL. Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annu Rev Immunol. 2018;36:461–488. doi: 10.1146/annurev-immunol-042617-053019

[16]

Geltink R.I.K.., Kyle RL., Pearce E.L. Unraveling the Complex Interplay Between T Cell Metabolism and Function // Annu Rev Immunol. 2018. Vol. 36. P. 461–488. doi: 10.1146/annurev-immunol-042617-053019

[17]

Yang K, Blanco DB, Chen X, et al. Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells. Sci Immunol. 2018;3(25):eaas9818. doi: 10.1126/sciimmunol.aas9818

[18]

Yang K., Blanco D.B., Chen X., et al. Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells // Sci Immunol. 2018. Vol. 3, N 25. P. eaas9818. doi: 10.1126/sciimmunol.aas9818

[19]

Bishop EL, Gudgeon N, Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones. Front Immunol. 2021;12:653605. doi: 10.3389/fimmu.2021.653605

[20]

Bishop E.L., Gudgeon N., Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones // Front Immunol. 2021. Vol. 12. P. 653605. doi: 10.3389/fimmu.2021.653605

[21]

Marín-Aguilar F, Pavillard LE, Giampieri F, et al. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds. Int J Mol Sci. 2017;18(2):288. doi: 10.3390/ijms18020288

[22]

Marín-Aguilar F., Pavillard L.E., Giampieri F., et al. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds // Int J Mol Sci. 2017. Vol. 18, N 2. P. 288. doi: 10.3390/ijms18020288

[23]

Ke R, Xu Q, Li C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42(4): 384–392. doi: 10.1002/cbin.10915

[24]

Ke R., Xu Q., Li C., et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism // Cell Biol Int. 2018. Vol. 42, N 4. P. 384–392. doi: 10.1002/cbin.10915

[25]

Petch LA, Bockholt SM, Bouton A, et al. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J Cell Sci. 1995;108(Pt 4):1371–1379. doi: 10.1242/jcs.108.4.1371

[26]

Petch L.A., Bockholt S.M., Bouton A., et al. Adhesion-induced tyrosine phosphorylation of the p130 src substrate // J Cell Sci. 1995. Vol. 108, pt 4. P. 1371–1379. doi: 10.1242/jcs.108.4.1371

[27]

PI3K: obshchiye svedeniya [PI3K: general information]. Available from: http://humbio.ru/humbio/01122001/pi3k/0001095c.htm Accessed: Feb 2, 2023. (In Russ).

[28]

PI3K: общие сведения. Режим доступа http://humbio.ru/humbio/01122001/pi3k/0001095c.htm Дата обращения: 02.02.2023

[29]

Yehia L, Keel E, Eng C. The Clinical Spectrum of PTEN Mutations. Annu Rev Med. 2020;71:103–116. doi: 10.1146/annurev-med-052218-125823

[30]

Yehia L., Keel E., Eng C. The Clinical Spectrum of PTEN Mutations // Annu Rev Med. 2020. Vol. 71. P. 103–116. doi: 10.1146/annurev-med-052218-125823

[31]

Zabudskaya K. PTEN as a metabolic regulator. Part 1: systemic homeostasis. Medach. 2019. Oct 8. Available from: https://medach.pro/post/2161 02/02/2023 Accessed: Feb 2, 2023. (In Russ).

[32]

Забудская К. PTEN как метаболический регулятор. Часть 1: системный гомеостаз // Медач. 2019. 8 октября. Режим доступа: https://medach.pro/post/2161 Дата обращения: 02.02.2023

[33]

Avdeeva MG, Shubich MG, Lebedev VV, Shmelev SI. Features of lymphocyto-monocyto-neutrophil interactions with different severity of leptospirosis (cytochemical study). Clinical Laboratory Diagnostics. 1994;(4):25–27. (In Russ).

[34]

Авдеева М.Г., Шубич М.Г., Лебедев В.В., Шмелев С.И. Особенности лимфоцито-моноцито-нейтрофильных взаимодействий при разной тяжести течения лептоспироза (цитохимическое исследование) // Клиническая лабораторная диагностика. 1994. № 4. С. 25–27.

[35]

Avdeeva MG, Lebedev VV, Shubich MG. Molecular mechanisms of the development of the infectious process. Clinical Laboratory Diagnostics. 2007;(4):15–22. (In Russ).

[36]

Авдеева М.Г., Лебедев В.В., Шубич М.Г. Молекулярные механизмы развития инфекционного процесса // Клиническая лабораторная диагностика. 2007. № 4. С. 15–22.

[37]

Qiu J, Wu B, Goodman SB, et al. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Front Immunol. 2021;12:652771. doi: 10.3389/fimmu.2021.652771

[38]

Qiu J., Wu B., Goodman S.B., et al. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis // Front Immunol. 2021. Vol. 12. P. 652771. doi: 10.3389/fimmu.2021.652771

[39]

Almeida L, Dhillon-LaBrooy A, Carriche G, et al. CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol. 2021;148(1):16–32. doi: 10.1016/j.jaci.2021.03.033

[40]

Almeida L., Dhillon-LaBrooy A., Carriche G., et al. CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria // J Allergy Clin Immunol. 2021. Vol. 148, N 1. P. 16–32. doi: 10.1016/j.jaci.2021.03.033

[41]

Diskin C, Ryan TAJ, O’Neill LAJ. Modification of Proteins by Metabolites in Immunity. Immunity. 2021;54(1):19–31. doi: 10.1016/j.immuni.2020.09.014

[42]

Diskin C., Ryan T.A.J., O’Neill L.A.J. Modification of Proteins by Metabolites in Immunity // Immunity. 2021. Vol. 54, N 1. P. 19–31. doi: 10.1016/j.immuni.2020.09.014

[43]

Domínguez-Andrés J, Joosten LA, Netea MG. Induction of innate immune memory: the role of cellular metabolism. Curr Opin Immunol. 2019;56:10–16. doi: 10.1016/j.coi.2018.09.001

[44]

Domínguez-Andrés J., Joosten L.A., Netea M.G. Induction of innate immune memory: the role of cellular metabolism // Curr Opin Immunol. 2019. Vol. 56. P. 10–16. doi: 10.1016/j.coi.2018.09.001

[45]

Ross SH, Cantrell DA. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol. 2018;36:411–433. doi: 10.1146/annurev-immunol-042617-053352

[46]

Ross S..H, Cantrell D.A. Signaling and Function of Interleukin-2 in T Lymphocytes // Annu Rev Immunol. 2018. Vol. 36. P. 411–433. doi: 10.1146/annurev-immunol-042617-053352

[47]

Cai F, Jin S, Chen G. The Effect of Lipid Metabolism on CD4+ T Cells. Mediators Inflamm. 2021:6634532. doi: 10.1155/2021/6634532

[48]

Cai F., Jin S., Chen G. The Effect of Lipid Metabolism on CD4+ T Cells // Mediators Inflamm. 2021. P. 6634532. doi: 10.1155/2021/6634532

[49]

Sukoyan GV. Signalosomes, structure, function and dysfunction. Pathological Physiology and Experimental Therapy. 2012;(4):15–28. (In Russ).

[50]

Сукоян Г.В. Сигналосомы, строение, функция и дисфункция // Патологическая физиология и экспериментальная терапия. 2012. № 4. С. 15–28.

[51]

Chatterjee N, Pazarentzos E, Mayekar MK, et al. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Rep. 2019;28(9):2317–2330.e8. doi: 10.1016/j.celrep.2019.07.063

[52]

Chatterjee N., Pazarentzos E., Mayekar M.K., et al. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers // Cell Rep. 2019. Vol. 28, N 9. P. 2317–2330.e8. doi: 10.1016/j.celrep.2019.07.063

[53]

Khan U, Ghazanfar H. T Lymphocytes and Autoimmunity. Int Rev Cell Mol Biol. 2018;341:125–168. doi: 10.1016/bs.ircmb.2018.05.008

[54]

Khan U., Ghazanfar H. T Lymphocytes and Autoimmunity // Int Rev Cell Mol Biol. 2018. Vol. 341. P. 125–168. doi: 10.1016/bs.ircmb.2018.05.008

[55]

Zeltser AN, Mordanov SV, Snezhko IV, et al. Myelodysplastic syndrome: difficulties and advances in diagnosis. Journal of Fundamental Medicine and Biology. 2017;(1):27–37. (In Russ).

[56]

Зельцер А.Н., Морданов С.В., Снежко И.В., и др. Миелодиспластический синдром: трудности и успехи диагностики // Журнал фундаментальной медицины и биологии. 2017. № 1. С. 27–37.

[57]

Khvastunova AN, Al-Radi LS, Kapranov NM, et al. Cell-binding microarray application in diagnosis of hairy cell leukemia. Oncohematology. 2015;10(1):37–45. (In Russ). doi: 10.17650/1818-8346-2015-1-37-45

[58]

Хвастунова А.Н., Аль-Ради Л.С., Капранов Н.М., и др. Использование клеточного биочипа в диагностике волосатоклеточного лейкоза // Онкогематология. 2015. Т. 10, № 1. С. 37–45. doi: 10.17650/1818-8346-2015-1-37-45

[59]

Savchenko AA, Borisov AG. Fundamentals of clinical immunometabolomics. Novosibirsk: Nauka; 2012. 263 p. (In Russ).

[60]

Савченко А.А., Борисов А.Г. Основы клинической иммунометаболомики. Новосибирск: Наука, 2012. 263 с.

[61]

Nguyen HD, Kuril S, Bastian D, Yu XZ. T-Cell Metabolism in Hematopoietic Cell Transplantation. Front Immunol. 2018;9:176. doi: 10.3389/fimmu.2018.00176

[62]

Nguyen H.D., Kuril S., Bastian D., Yu X.Z. T-Cell Metabolism in Hematopoietic Cell Transplantation // Front Immunol. 2018. Vol. 9. P. 176. doi: 10.3389/fimmu.2018.00176

[63]

Qiu J, Wu B, Goodman SB, et al. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Front Immunol. 2021;12:652771. doi: 10.3389/fimmu.2021.652771

[64]

Qiu J., Wu B., Goodman S.B., et al. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis // Front Immunol. 2021. Vol. 12. P. 652771. doi: 10.3389/fimmu.2021.652771

[65]

Khaybullina GM. Blood cells enzymes as an indicator of adaptive processes in newborns delivered off by mothers with iron deficiency anemia. Kazan Medical Journal. 2015;96(2):177–181. (In Russ). doi: 10.17750/KMJ2015-177

[66]

Хайбуллина Г.М. Ферменты клеток крови как индикатор адаптационных процессов у новорождённого при железодефицитной анемии у матери // Казанский медицинский журнал. 2015. Т. 96. № 2. C. 177–181. doi: 10.17750/KMJ2015-177

[67]

Avdeeva MG, Konchakova AA. Clinical significance of immunocytochemical parameters in patients with toxoplasmosis. Epidemiology and Infectious Diseases. 2008;(2):52–54. (In Russ).

[68]

Авдеева М.Г., Кончакова А.А Клиническое значение иммуноцитохимических показателей больных токсоплаэмозом // Эпидемиология и инфекционные болезни. 2008. № 2. С. 52–54.

[69]

Pirogova NP, Novitsky VV, Babaeva LV, et al. Characterization of neutrophilic and monocytic patterns of peripheral blood in ixodid tick-borne borreliosis. Siberian Scientific Medical Journal. 2003;23(1): 61–64. (In Russ).

[70]

Пирогова Н.П., Новицкий В.В., Бабаева Л.В., и др. Характеристика нейтрофильного и моноцитарного паттернов периферической крови при иксодовом клещевом боррелиозе // Сибирский научный медицинский журнал. 2003. Т. 23, № 1. С. 61–64.

[71]

Skripchenko NV, Ivanova GP, Skripchenko EYu, et al. Analysis of the effectiveness of immunotherapy for early and late neuroborreliosis in children. Infectious Diseases. 2021;19(2):83–94. (In Russ). doi: 10.20953/1729-9225-2021-2-83-94

[72]

Скрипченко Н.В., Иванова Г.П., Скрипченко Е.Ю., и др. Анализ эффективности иммунотерапии раннего и позднего нейроборрелиоза у детей // Инфекционные болезни. 2021. Т. 19, № 2. С. 83–94. doi: 10.20953/1729-9225-2021-2-83-94

RIGHTS & PERMISSIONS

Avdeeva M.G., Moshkova D.Y., Blazhnyaya L.P., Kozyreva E.V.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/