An emergent approach to the formation of a strategy for anti-epidemic preparedness of healthcare organizations in the context of a new epidemiological reality
Galina D. Bryukhanova , Vladimir N. Gorodin , Dmitry V. Nosikov , Irina V. Shestakova , Andrey V. Nezhurin
Epidemiology and Infectious Diseases ›› 2021, Vol. 26 ›› Issue (6) : 294 -307.
An emergent approach to the formation of a strategy for anti-epidemic preparedness of healthcare organizations in the context of a new epidemiological reality
The review presents factual data, unguarded digital and qualitative information on cases of infectious diseases and outbreaks of current infections during the COVID-19 coronavirus pandemic. Sources of information: materials of the World Health Organization, Centers for Disease Control (USA, European countries), the Federal Service for Supervision of Consumer Protection and Human Well-Being, conferences and scientific reports, etc.
The review deals with the problem of a new epidemiological reality as a complex, complex, open system with the emergence property inherent in such systems ― the emergence of new phenomena that are not equal to the effects of a simple sum of epidemic processes or their driving forces. Unpredictability of the new epidemiological reality ― from a rapid increase in morbidity to reverse development (and vice versa) when integrating new elements (biological, social, technological) into it, it is largely due to the effects of co-identity (mutual influence of sudden phenomena), which requires an in-depth study of the processes occurring at different hierarchical levels of this system for the successful relief of epidemic complications. To conduct research at the level of the infectious process, it is proposed to create a federal specialized scientific and practical clinical medical center with educational and training modules. The scientific research of the center will focus on the study of the characteristic “systemic qualities” of the infectious process based on knowledge about the properties and relationships between the elements of the system; between the system and the objects of its environment; on diagnosis (including cases of coinfections, superinfections) and identification of modifying and limiting factors in the pathogenetic and clinical manifestation of diseases. The training modules of the center will provide modern opportunities for the training of various professional groups of medical and non-medical specialists (device designers and designers of medical equipment, employees of engineering and operational services of medical institutions) on working under strict anti-epidemic regime, as well as on design tasks, technological preparation for operation and refinement of new models of equipment, means personal protection, consumables.
Thus, a specialized scientific and practical clinical medical center with educational and training modules will become a platform at which, through intersectoral cooperation and interaction, an emergent approach to the formation of an anti-epidemic preparedness strategy of medical organizations will be implemented ― detecting changes in the clinical manifestations of infectious diseases and responding appropriately to future sudden external epidemic challenges.
infectious diseases / epidemiology / emergent approach / prevention / hospital
| [1] |
Lewis HC, Ware H, Whelan M, et al. SARS-CoV-2 infection in Africa: a systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to December 2021. medRxiv. doi: 10.1101/2022.02.14.22270934 |
| [2] |
Lewis H.C., Ware H., Whelan M., et al. SARS-CoV-2 infection in Africa: a systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to December 2021 // medRxiv. |
| [3] |
Nachega JB, Sam-Agudu NA, Machekano RN, et al. Assessment of clinical outcomes among children and adolescents hospitalized with COVID-19 in 6 sub-saharan African Countries. JAMA Pediatr. 2022;176(3):e216436. doi: 10.1001/jamapediatrics.2021.6436 |
| [4] |
Nachega J.B., Sam-Agudu N.A, Machekano R.N., et al. Assessment of clinical outcomes among children and adolescents hospitalized with COVID-19 in 6 Sub-Saharan African Countries // JAMA Pediatr. 2022. Vol. 176, N 3. Р. e216436. doi: 10.1001/jamapediatrics.2021.6436 |
| [5] |
Chen J, Lu H. Yellow fever in China is still an imported disease. Biosci Trends. 2016;10(2):158–162. doi: 10.5582/bst.2016.01051 |
| [6] |
Chen J., Lu H. Yellow fever in China is still an imported disease // Biosci Trends. 2016. Vol. 10, N 2. Р. 158–162. doi: 10.5582/bst.2016.01051 |
| [7] |
Ling Y, Chen J, Huang Q, et al. Yellow fever in a worker returning to China from Angola, March 2016. Emerg Infect Dis. 2016;22(7): 1317–1318. doi: 10.3201/eid2207.160469 |
| [8] |
Ling Y., Chen J., Huang Q., et al. Yellow fever in a worker returning to China from Angola, March 2016 // Emerg Infect Dis. 2016. Vol. 22, N 7. Р. 1317–1318. doi: 10.3201/eid2207.160469 |
| [9] |
Simpson K, Heymann D, Brown CS, et al. Human monkeypox ― After 40 years, an unintended consequence of smallpox eradication. Vaccine. 2020;38(33):5077–5081. doi: 10.1016/j.vaccine.2020.04.062 |
| [10] |
Simpson K., Heymann D., Brown C.S., et al. Human monkeypox ― After 40 years, an unintended consequence of smallpox eradication // Vaccine. 2020. Vol. 38, N 33. Р. 5077–5081. doi: 10.1016/j.vaccine.2020.04.062 |
| [11] |
Basov AA, Tsvirkun OV, Gerasimova AG, Zekoreev AH. The problem of whooping cough in some regions of the world. Inf Immunity. 2019;9(2):354–362. (In Russ). doi: 10.15789/2220-7619-2019-2-354-362 |
| [12] |
Басов А.А., Цвиркун О.В., Герасимова А.Г., Зекореева А.Х. Проблема коклюша в некоторых регионах мира // Инфекция и иммунитет. 2019. Т. 9, № 2. C. 354–362. doi: 10.15789/2220-7619-2019-2-354-362 |
| [13] |
Mulholland K, Kretsinger K, Wondwossen L, Crowcroft N. Action needed now to prevent further increases in measles and measles deaths in the coming years. Lancet. 2020;396(10265):1782–1784. doi: 10.1016/S0140-6736(20)32394-1 |
| [14] |
Mulholland K., Kretsinger K., Wondwossen L., Crowcroft N. Action needed now to prevent further increases in measles and measles deaths in the coming years // Lancet. 2020. Vol. 396, N 10265. P. 1782–1784. doi: 10.1016/S0140-6736(20)32394-1 |
| [15] |
Gee JE, Bower WA, Kunkel A, et al. Multistate outbreak of melioidosis associated with imported aromatherapy spray. New Eng J Med. 2022;386(9):861–868. doi: 10.1056/NEJMoa2116130 |
| [16] |
Gee J.E., Bower W.A., Kunkel A., et al. Multistate outbreak of melioidosis associated with imported aromatherapy spray // New Eng J Med. 2022. Vol. 386, N 9. Р. 861–868. doi: 10.1056/NEJMoa2116130 |
| [17] |
Maleev VV. Some aspects of the evolution of infectious pathology at the present stage. Kuban Sci Med Bulletin. 2020;27(4):18–26. (In Russ). doi: 10.25207/1608-6228-2020-27-4-18-26 |
| [18] |
Малеев В.В. Некоторые аспекты эволюции инфекционной патологии на современном этапе // Кубанский научный медицинский вестник. 2020. Т. 27, № 4. С. 18–26. doi: 10.25207/1608-6228-2020-27-4-18-26 |
| [19] |
Boots M, Sasaki A. Small worlds and the evolution of virulence: infection occurs locally and at a distance. Proc Biol Sci. 1999;266(1432):1933–1938. doi: 10.1098/rspb.1999.0869 |
| [20] |
Boots M., Sasaki A. Small worlds and the evolution of virulence: infection occurs locally and at a distance // Proc Biol Sci. 1999. Vol. 266, N 1432. Р. 1933–1938. doi: 10.1098/rspb.1999.0869 |
| [21] |
Levin BR, Lipsitch M, Bonhoeffer S. Population biology, evolution, and infectious disease; convergence and synthesis. Science. 1999;283(5403):806–809. doi: 10.1126/science.283.5403.806 |
| [22] |
Levin B.R., Lipsitch M., Bonhoeffer S. Population biology, evolution, and infectious disease; convergence and synthesis // Science. 1999. Vol. 283, N 5403. Р. 806–809. doi: 10.1126 /science.283.5403.806 |
| [23] |
Caraco T, Glavanakov S, Li S, et al. Spatially structured superinfection and the evolution of disease virulence. Theor Popul Biol. 2006;69(4):367–384. doi: 10.1016/j.tpb.2005.12.004 |
| [24] |
Caraco T., Glavanakov S., Li S., et al. Spatially structured superinfection and the evolution of disease virulence // Theor Popul Biol. 2006. Vol. 69, N 4. Р. 367–384. doi: 10.1016/j.tpb.2005.12.004 |
| [25] |
Varki A. Nothing in medicine makes sense, except in the light of evolution. J Mol Med (Berl). 2012;90(5):481–494. doi: 10.1007/s00109-012-0900-5 |
| [26] |
Varki A. Nothing in medicine makes sense, except in the light of evolution // J Mol Med (Berl). 2012. Vol. 90, N 5. Р. 481–494. doi: 10.1007/s00109-012-0900-5 |
| [27] |
Leventhal GE, Hill AL, Nowak MA, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nat Commun. 2015;6:6101. doi: 10.1038/ncomms7101 |
| [28] |
Leventhal G.E., Hill A.L., Nowak M.A., Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks // Nat Commun. 2015. N 6. Р. 6101. doi: 10.1038/ncomms7101 |
| [29] |
Onishchenko GG, Smolensky VY, Yezhova EB, et al. Conceptual foundations of biological safety. Part I. Bulletin Russ Academy Sci. 2013;68(10):4–12. (In Russ). doi: 10.15690/vramn.v68i10.781 |
| [30] |
Онищенко Г.Г., Смоленский В.Ю., Ежлова Е.Б., и др. Концептуальные основы биологической безопасности. Часть I // Вестник РАМН. 2013. Т. 68, № 10. С. 4–12. doi: 10.15690/vramn.v68i10.781 |
| [31] |
Antipov AB, Antipov VB, Kovtun VA. The proliferation of weapons of mass destruction is a threat to the security of the State. Biological weapons. Military Thought. 2018;(9):1–11. (In Russ). |
| [32] |
Антипов А.Б., Антипов В.Б., Ковтун В.А. Распространение оружия массового поражения ― угроза безопасности государства. Биологическое оружие // Военная мысль. 2018. № 9. С. 1–11. |
| [33] |
Abugalieva ZG, Iskakova FA, Begimbaeva EZ, Utesheva GS. Issues of biological safety and biosecurity in the same conditions. Bulletin of the Kazakh National Medical University. 2020;(2-1):3 92–396. (In Russ). |
| [34] |
Абугалиева Ж.Г., Искакова Ф.А., Бегимбаева Э.Ж., Утешева Г.С. Вопросы биологической безопасности и биозащиты в современных условиях // Вестник КазНМУ. 2020. № 2-1. С. 392–396. |
| [35] |
Udovichenko SK, Toporkov VP. On epidemiological risks, their constituent categories and predictors in the event of emergency situations of a sanitary-epidemiological (biological) nature. Health Risk Analysis. 2020;(1):83–91. (In Russ). doi: 10.21668/health.risk/2020.1.09 |
| [36] |
Удовиченко С.К., Топорков В.П. Об эпидемиологических рисках, составляющих их категориях и предикторах при возникновении чрезвычайных ситуаций санитарно-эпидемиологического (биологического) характера // Анализ риска здоровью. 2020. № 1. С. 83–91. doi: 10.21668/health.risk/2020.1.09 |
| [37] |
Holopova EN, Masal’skaya VO. Biological weapons as a threat to Russia’s national security. Rule Law Theory Practice. 2020;(2): 112–122. (In Russ). doi: 10.33184/pravgos-2020.2.10 |
| [38] |
Холопова Е.Н., Масальская В.О. Биологическое оружие как угроза национальной безопасности России // Правовое государство: теория и практика. 2020. № 2. С. 112–122. doi: 10.33184/pravgos-2020.2.10 |
| [39] |
Atlas RM, Dando M. The dual-use dilemma for the life sciences: perspectives, conundrums, and global solutions. Biosecur Bioterror. 2006;4(3):276–286. doi: 10.1089/bsp.2006.4.276 |
| [40] |
Atlas R.M., Dando M. The dual-use dilemma for the life sciences: perspectives, conundrums, and global solutions // Biosecur Bioterror. 2006. Vol. 4, N 3. Р. 276–286. doi: 10.1089/bsp.2006.4.276 |
| [41] |
Gerstein D, Giordano J. Rethinking the biological and toxin weapons convention? Health Secur. 2017;15(6):638–641. doi: 10.1089/hs.2017.0082 |
| [42] |
Gerstein D., Giordano J. Rethinking the biological and toxin weapons convention? // Health Secur. 2017. Vol. 15, N 6. Р. 638–641. doi: 10.1089/hs.2017.0082 |
| [43] |
Bakanidze L, Perkins PD. Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation. BMC Public Health. 2010;10(Suppl 1):S12. doi: 10.1186/1471-2458-10-S1-S12 |
| [44] |
Bakanidze L., Perkins P.D. Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation // BMC Public Health. 2010. Vol. 10, Suppl 1. Р. S12. doi: 10.1186/1471-2458-10-S1-S12 |
| [45] |
Viktorov AG. Genetic methods of pest control. History and current state. Russ J Biol Invasions. 2021;(1):51–62. doi: 10.35885/1996-1499-2021-14-1-51-63 |
| [46] |
Викторов А.Г. Генетические методы борьбы с вредными насекомыми. История и современное состояние // Российский журнал биологических инвазий. 2021. № 1. С. 51–62. doi: 10.35885/1996-1499-2021-14-1-51-63 |
| [47] |
Waltz E. First genetically modified mosquitoes released in the United States. Nature. 2021;593(7858):175–176. doi: 10.1038/d41586-021-01186-6 |
| [48] |
Waltz E. First genetically modified mosquitoes released in the United States // Nature. 2021. Vol. 593, N 7858. P. 175–176. doi: 10.1038/d41586-021-01186-6 |
| [49] |
Evans BR, Kotsakiozi P, Costa-da-Silva AL, et al. Transgenic aedes aegypti mosquitoes transfer genes into a natural population. Sci Rep. 2019;9(1):13047. doi: 10.1038/s41598-019-49660-6 |
| [50] |
Evans B.R., Kotsakiozi P., Costa-da-Silva A.L., et al. Transgenic aedes aegypti mosquitoes transfer genes into a natural population // Sci Rep. 2019. Vol. 9, N 1. Р. 13047. doi: 10.1038/s41598-019-49660-6 |
| [51] |
Bull JJ, Smithson MW, Nuismer SL..Transmissible viral vaccines. Trends Microbiology. 2018;26(1):6–15. doi: 10.1016/j.tim.2017.09.007 |
| [52] |
Bull J.J., Smithson M.W., Nuismer S.L..Transmissible viral vaccines // Trends Microbiology. 2018. Vol. 26, N 1. Р. 6–15. doi: 10.1016/j.tim.2017.09.007 |
| [53] |
Varrelman TJ, Remien CH, Basinski AJ, et al. Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines. Proceedings Nat Academy Sci (PNAS). 2022;119(4):e2108610119. doi: 10.1073/pnas.2108610119 |
| [54] |
Varrelman T.J., Remien C.H., Basinski A.J., et al. Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines // Proceedings Nat Academy Sci (PNAS). 2022. Vol. 119, N 4. Р. e2108610119. doi: 10.1073/pnas.2108610119 |
| [55] |
Bannister B, Puro V, Fusco FM, et al. Framework for the design and operation of high-level isolation units: consensus of the European Network of Infectious Diseases. Lancet Infectious Diseases. 2009;9(1):45–56. doi: 10.1016/S1473-3099(08)70304-9 |
| [56] |
Bannister B., Puro V., Fusco F.M., et al. Framework for the design and operation of high-level isolation units: consensus of the European Network of Infectious Diseases // Lancet Infectious Diseases. 2009. Vol. 9, N 1. Р. 45–56. doi: 10.1016/S1473-3099(08)70304-9 |
| [57] |
Cherkassky BL. Global epidemiology. Moscow: Practical Medicine; 2008. 447 р. (In Russ). |
| [58] |
Черкасский Б.Л. Глобальная эпидемиология. Москва: Практическая медицина, 2008. 447 с. |
| [59] |
Hadarcev AA. On emergence in living systems and Wheeler’s ideas (review of scientific literature). Bulletin New Med Technol. 2019;(1):129–132. (In Russ). doi: 10.24411/1609-2163-2019-16 |
| [60] |
Хадарцев А.А. Об эмерджентности в живых системах и идеях Уиллера (обзор научной литературы) // Вестник новых медицинских технологий. 2019. № 1. С. 129–132. doi: 10.24411/1609-2163-2019-16 |
| [61] |
Morse S. Factors in the emergence of infectious disease. Emerging Inf Dis. 1995;1(1):7–15. doi: 10.3201/eid0101.950102 |
| [62] |
Morse S. Factors in the emergence of infectious disease // Emerging Inf Dis. 1995. Vol. 1, N 1. Р. 7–15. doi: 10.3201/eid0101.950102 |
| [63] |
Кnyazeva H. Strategies of dynamic complexity management. Foresight STI Governance. 2020;14(4):34–45. doi: 10.17323/2500-2597.2020.4.34.45 |
| [64] |
Кnyazeva H. Strategies of dynamic complexity management. Foresight STI Governance. 2020. Vol. 14, N 4. Р. 34–45. doi: 10.17323/2500-2597.2020.4.34.45 |
| [65] |
Makmillan CH. Japanese industrial system. Moscow: Progress; 1988. 398 р. (In Russ). |
| [66] |
Макмиллан Ч. Японская промышленная система. Москва: Прогресс, 1988. 398 с. |
Eco-vector
/
| 〈 |
|
〉 |