Comparative evaluation of antitumor effects of methionine-γ-lyase in in vitro 2D and 3D human tumor models

Saida Sh. Karshieva , Elena A. Demidova , Tatyana S. Spirina , Gulalek A. Babaeva , Nikolay A. Bondarev , Sergey V. Bazhenov , Ilya V. Manukhov , Vadim S. Pokrovsky

Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (3) : 234 -244.

PDF
Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (3) : 234 -244. DOI: 10.17816/onco640835
Original Study Articles
other

Comparative evaluation of antitumor effects of methionine-γ-lyase in in vitro 2D and 3D human tumor models

Author information +
History +
PDF

Abstract

BACKGROUND: Promising antitumor drug screening results obtained from monolayer cultures are often poorly reproduced in the in vivo models. Using clinically relevant 3D in vitro human tumor models, such as spheroids, provides a more reliable framework for evaluating antitumor activity. This is particularly important when the drug’s mechanism of action targets cellular metabolism.

AIM: To conduct a comparative study of the antitumor activity of methionine-γ-lyase (MGL) in 2D and 3D human tumor models.

MATERIALS AND METHODS: Human fibroblast cell culture and tumor cell lines, e.g. MCF7 human breast cancer, HCT-116 colorectal cancer, PANC-1 human pancreatic cancer, Huh7 liver cancer, and LNCaP human prostate cancer were used to evaluate MGL cytotoxicity. Cultural plates with low-adhesive coating were used to produce the spheroids. Cell survival was assessed using the resazurin test.

RESULTS: The spheroid model showed higher cell survival after 72-hour MGL exposure compared with the monolayer culture model in all tested cultures. Fibroblasts demonstrated the lowest sensitivity to MGL exposure in both 2D and 3D culture models, with IC50=2.2 and 9.1 IU/mL, respectively. The rapidly proliferating PANC-1 and HCT-116 cells showed the highest sensitivity to MGL in 2D and 3D models: IC50=0.23 and 1.5 IU/mL; IC50=0.83 and 1.43 IU/mL, respectively.

CONCLUSION: The effect of MGL on cell survival in the spheroid systems is less pronounced than in monolayers. The viability of cells exposed to survival MGL in the spheroid culture system is independent of spheroid size or growth rate. Despite the maximum cytotoxic effect being observed in the fast-growing spheroid model of colon cancer HCT-116, and the lowest in the model of slowly dividing fibroblasts, this dependence was not so obvious for other cell types. Overall, the spheroid model has proven useful for testing the specific activity of enzyme-based antitumor drugs, as far as it overcomes the excessive intrinsic sensitivity observed in monolayer cancer models.

Keywords

enzyme prodrug therapy / methionine γ-lyase / spheroids / tumoroids / 3D tumor models

Cite this article

Download citation ▾
Saida Sh. Karshieva, Elena A. Demidova, Tatyana S. Spirina, Gulalek A. Babaeva, Nikolay A. Bondarev, Sergey V. Bazhenov, Ilya V. Manukhov, Vadim S. Pokrovsky. Comparative evaluation of antitumor effects of methionine-γ-lyase in in vitro 2D and 3D human tumor models. Russian Journal of Oncology, 2024, 29(3): 234-244 DOI:10.17816/onco640835

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbosa M, Xavier C, Pereira R, et al. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers. 2022;14(1):190. doi: 10.3390/cancers14010190

[2]

Barbosa M., Xavier C., Pereira R., et al. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs // Cancers. 2022. Vol. 14, N 1. P. 190. doi: 10.3390/cancers14010190

[3]

Baker B, Chen C. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–3024. doi: 10.1242/jcs.079509

[4]

Baker B., Chen C. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues // J Cell Sci. 2012. Vol. 125, N 13. P. 3015–3024. doi: 10.1242/jcs.079509

[5]

Däster S, Amatruda N, Calabrese D, et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 2017;8(1):1725–1736. doi: 10.18632/oncotarget.13857

[6]

Däster S., Amatruda N., Calabrese D., et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment // Oncotarget. 2017. Vol. 8, N 1. P. 1725–1736. doi: 10.18632/oncotarget.13857

[7]

Han S, Kwon S, Kim K. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021; 21(1):152. doi: 10.1186/s12935-021-01853-8

[8]

Han S., Kwon S., Kim K. Challenges of applying multicellular tumor spheroids in preclinical phase // Cancer Cell Int. 2021. Vol. 21, N 1. P. 152. doi: 10.1186/s12935-021-01853-8

[9]

Koudan EV, Kudan SP, Karshieva SS, et al. The Determination of Cytostatic Activity on a 3D Spheroids-Based Model in Comparison with Conventional Monolayer Culture. Cell Tiss Biol. 2021;15(6):522–531. doi: 10.1134/S1990519X21060055

[10]

Koudan E., Kudan S., Karshieva S., et al. The Determination of Cytostatic Activity on a 3D Spheroids-Based Model in Comparison with Conventional Monolayer Culture // Cell Tiss. Biol. 2021. Vol. 15, N 6. P. 522–531. doi: 10.1134/S1990519X21060055

[11]

Morozova EA, Kulikova VV, Yashin DV, et al. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Naturae. 2013;5(3):92–98. doi: 10.32607/20758251-2013-5-3-92-98

[12]

Морозова Е.А., Куликова В.В., Яшин Д.В., и др. Кинетические характеристики и цитотоксическая активность рекомбинантных препаратов метионин–γ-лиазы Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis и Citrobacter freundii // Acta Naturae (русскоязычная версия). 2013. Т. 5, № 3. C 96–102. doi: 10.32607/20758251-2013-5-3-92-98

[13]

Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer. 2024;1879(4):189122. doi: 10.1016/j.bbcan.2024.189122

[14]

Abo Qoura L., Balakin K.V., Hoffman R., Pokrovsky V.S. The potential of methioninase for cancer treatment // Biochim Biophys Acta Rev Cancer. 2024. Vol. 1879, N 4. P. 189122. doi: 10.1016/j.bbcan.2024.189122

[15]

Pokrovsky VS, Qoura LA, Demidova EA, et al. Targeting Methionine Addiction of Cancer Cells with Methioninase. Biochemistry. 2023;88(7):944–952. doi: 10.1134/S0006297923070076

[16]

Pokrovsky V.S., Qoura L.A., Demidova E.A. et al. Targeting Methionine Addiction of Cancer Cells with Methioninase // Biochemistry (Mosc). 2023. Vol. 88, N 7. P. 944–952. doi: 10.1134/S0006297923070076

[17]

Kaiser P. Methionine Dependence of Cancer. Biomolecules. 2020;10(4):568. doi: 10.3390/biom10040568

[18]

Kaiser P. Methionine Dependence of Cancer // Biomolecules. 2020. Vol. 10, N 4. P. 568. doi: 10.3390/biom10040568

[19]

Mecham JO, Rowitch D, Wallace CD, et al. The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun. 1983;117(2):429–434. doi: 10.1016/0006-291x(83)91218-4

[20]

Mecham J., Rowitch D., Wallace C., et al. The metabolic defect of methionine dependence occurs frequently in human tumor cell lines // Biochem Biophys Res Commun. 1983. Vol. 117, N 2. P. 429–434. doi: 10.1016/0006-291x(83)91218-4

[21]

Breillout F, Antoine E, Poupon MF. Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst. 1990;82(20):1628–1632. doi: 10.1093/jnci/82.20.1628

[22]

Breillout F., Antoine E., Poupon M. Methionine dependency of malignant tumors: a possible approach for therapy // J Natl Cancer Inst. 1990. Vol. 82, N 20. P. 1628–1632. doi: 10.1093/jnci/82.20.1628

[23]

Garg S, Morehead L, Bird J, et al. Characterization of methionine dependence in melanoma cells. Mol Omics. 2024; 20(1):37–47. doi: 10.1039/d3mo00087g

[24]

Garg S., Morehead L., Bird J., et al. Characterization of methionine dependence in melanoma cells // Mol Omics. 2024. Vol. 20, N 1. P. 37–47. doi: 10.1039/d3mo00087g

[25]

Gati I, Bergström M, Muhr C, et al. Application of (methyl-11C)-methionine in the multicellular spheroid system. J Nucl Med. 1991;32(12):2258–2265.

[26]

Gáti I., Bergström M., Muhr C., et al. Application of (methyl-11C)-methionine in the multicellular spheroid system // J Nucl Med. 1991. Vol. 32, N 12. P. 2258–2265.

[27]

Anufrieva NV, Morozova EA, Kulikova VV, et al. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria. Acta Naturae. 2015;7(4):128–135. doi: 10.32607/20758251-2015-7-4-128-135

[28]

Ануфриева Н.В., Морозова E.A., Куликова В.В., и др. Сульфоксиды – аналоги L-метионина и L-цистеина как пролекарства против грамположительных и грамотрицательных бактерий // Acta Naturae. 2015. Т. 7, №4. C. 128–135. doi: 10.32607/20758251-2015-7-4-128-135

[29]

Pokrovsky VS, Anisimova NYu, Davydov DZh, et al. Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Invest New Drugs. 2019;37(2):201–209. doi: 10.1007/s10637-018-0619-4

[30]

Pokrovsky V.S., Anisimova N.Yu., Davydov Zh.D., et al. Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts // Invest New Drugs. 2019. Vol. 37, N 2. P. 201–209. doi: 10.1007/s10637-018-0619-4

[31]

Studier F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41(1):207–234. doi: 10.1016/j.pep.2005.01.016

[32]

Studier F.W. Protein production by auto-induction in high density shaking cultures. // Protein Expr Purif. 2005. Vol. 41, N 1. P. 207–234. doi: 10.1016/j.pep.2005.01.016

[33]

Manuhov IV, Bazhenov SV, Gnuchikh EYu, et al. Method of producing a methionine-gamma-lyase enzyme, an antitumor drug FDF MGL based on said enzyme and use of said agent for tumor growth inhibition. Invention patent. RU 2733440 C2, 01.10.2020. Application N 2018120541, 04.06.2018. EDN: TDLZWD

[34]

Манухов И.В., Баженов С.В., Гнучих Е.Ю., и др. Cпособ получения фермента метионин-гамма-лиазы, противоопухолевое лекарственное средство ГЛФ МГЛ на основе этого фермента и применение этого средства для торможения роста опухоли (варианты). Патент на изобретение RU 2733440 C2, 01.10.2020. Заявка № 2018120541 от 04.06.2018. EDN: TDLZWD

[35]

Zanoni M, Piccinini F, Arienti C, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103. doi: 10.1038/srep19103

[36]

Zanoni M., Piccinini F., Arienti C., et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained // Sci Rep. 2016. Vol. 6. P. 19103. doi: 10.1038/srep19103

[37]

Olejniczak A, Szarynska M, Kmiec Z. In vitro characterization of spheres derived from colorectal cancer cell lines. Int J Oncol. 2018;52(2):599–612. doi: 10.3892/ijo.2017.4206

[38]

Olejniczak A., Szarynska M., Kmiec Z. In vitro characterization of spheres derived from colorectal cancer cell lines // Int J Oncol. 2018, Vol. 52, N 2. P. 599–612. doi: 10.3892/ijo.2017.4206

[39]

Yeon S, No D, Lee S, et al. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PloS One. 2013;8(9):e73345. doi: 10.1371/journal.pone.0073345

[40]

Yeon S., No D., Lee S., et al. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model // PloS one. 2013. Vol. 8. N 9. P. e73345. doi: 10.1371/journal.pone.0073345

[41]

Costa E, Moreira A, de Melo-Diogo D, et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv. 2016;34(8):1427–1441. doi: 10.1016/j.biotechadv.2016.11.002

[42]

Costa E., Moreira A., de Melo-Diogo D., et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis // Biotechnol Adv. 2016. Vol. 34, N 8. P. 1427–1441. doi: 10.1016/j.biotechadv.2016.11.002

[43]

Vynnytska-Myronovska B, Bobak Y, Garbe Y, et al. Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation. Int J Cancer. 2012;130(9):2164–2175. doi: 10.1002/ijc.26221

[44]

Vynnytska-Myronovska B., Bobak Y., Garbe Y., et al. Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation // Int J Cancer. 2012. Vol. 130, N 9. P. 2164–2175. doi: 10.1002/ijc.26221

[45]

Vynnytska-Myronovska B, Kurlishchuk Y, Bobak Y, et al. Three-dimensional environment renders cancer cells profoundly less susceptible to a single amino acid starvation. Amino Acids. 2013;45(5):1221–1230. doi: 10.1007/s00726-013-1586-x

[46]

Vynnytska-Myronovska B., Kurlishchuk Y., Bobak Y., et al. Three-dimensional environment renders cancer cells profoundly less susceptible to a single amino acid starvation // Amino Acids. 2013. Vol. 45, N 5. P. 1221–1230. doi: 10.1007/s00726-013-1586-x

[47]

Ghanbari M, Matin M, Mansouri K, Sisakhtnezhad S. Amino acid profile changes during enrichment of spheroid cells with cancer stem cell properties in MCF-7 and MDA-MB-231 cell lines. Cancer Rep. 2023;6(5):e1809. doi: 10.1002/cnr2.1809

[48]

Ghanbari M., Matin M., Mansouri K., Sisakhtnezhad S. Amino acid profile changes during enrichment of spheroid cells with cancer stem cell properties in MCF-7 and MDA-MB-231 cell lines // Cancer Rep (Hoboken). 2023. Vol. 6, N 5. P. e1809. doi: 10.1002/cnr2.1809

[49]

Zhang Q, Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells. 2022;14(4):267–286. doi: 10.4252/wjsc.v14.i4.267

[50]

Zhang Q., Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy // World J Stem Cells. 2022. Vol. 14, N 4. P. 267-286. doi: 10.4252/wjsc.v14.i4.267

Funding

Министерство науки и высшего образования РФMinistry of Science and Higher Education of the Russian Federation

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/