Evaluation of biodistribution of Riboplatin, a Pt(IV) double prodrug based on cisplatin, using fluorescent visualization
Daniil V. Spektor , Roman A. Akasov , Evgeny V. Khaidukov , Polina A. Demina , Maksim E. Stepanov , Gulyalek Babayeva , V. S. Pokrovsky , Anna D. Lapanik , Alena D. Naumova , Anton V. Lopukhov , Natalia L. Klyachko , Ilya A. Kuzmichev , Alevtina S. Semkina , Aleksander S. Dubenskiy , Elena K. Beloglazkina , Olga O. Krasnovskaya
Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (3) : 211 -223.
Evaluation of biodistribution of Riboplatin, a Pt(IV) double prodrug based on cisplatin, using fluorescent visualization
BACKGROUND: Developing new platinum-based antitumor agents with improved efficacy and reduced toxicity remains a critical challenge. One promising approach is the synthesis of Pt(IV) prodrugs, such as precursor complexes of cisplatin and its analogs, which release active Pt(II) directly into the intracellular environment of malignant cells. To determine the optimal administration route for these new platinum-based drugs in vivo, it is essential to study their acute toxicity and biodistribution in vital organs.
AIM: To evaluate the tolerability, acute toxicity, biodistribution, and accumulation in breast tumors of Riboplatin and its liposomal formulation.
MATERIALS AND METHODS: The study was conducted at Moscow Pedagogical State University in female BALB/c mice (healthy or bearing transplanted breast adenocarcinoma EMT-6) and in immunodeficient BALB/c nude mice (bearing human breast adenocarcinoma SK-BR-3). The fluorescence imaging and inductively coupled plasma mass spectrometry were used.
RESULTS: A single dose (up to 48 mg/kg) of either water solution or liposomal formulation of Riboplatin did not cause any decrease of body weight in mice. The animals tolerated the dose 48 mg/kg of the drug, whereas the body weight decreased by less than 5% within 3 days. The distribution of Riboplatin and of its liposomal formulation over the body organs was assessed in BALB/c nude mice using fluorescence imaging and inductively coupled plasma mass spectrometry. Both forms provided Riboplatin delivering to EMT-6 tumor. Riboplatin in the form of water solution was predominantly excreted through liver and kidney, while the liposomal formulation lewd to drug accumulation in the spleen.
CONCLUSION: Riboplatin is a Pt(IV) prodrug with good tolerability, reduced toxicity compared with cisplatin, with effective accumulation in malignant breast tumors. The opportunity of assessing Riboplatin biodistribution in vivo in EMT-6 and SK-BR-3 tumor lines using fluorescence imaging has been demonstrated. Significant Riboplatin accumulation in EMT-6 tumors suggests the possibility of riboflavin-specific uptake.
cisplatin / riboflavin / combination therapy / chemotherapy / photodynamic therapy / liposomes / biodistribution
| [1] |
Johnstone T, Suntharalingam K, Lippard S. Third row transition metals for the treatment of cancer. Philos Trans A Math Phys Eng Sci. 2015;373(2037):20140185–20140185. doi: 10.1098/rsta.2014.0185 |
| [2] |
Johnstone T., Suntharalingam K., Lippard S. Third row transition metals for the treatment of cancer // Philos Trans A Math Phys Eng Sci. 2015. Vol. 373, N 2037. P. 20140185–20140185. doi: 10.1098/rsta.2014.0185 |
| [3] |
Galanski M, Keppler B. Searching for the Magic Bullet: Anticancer Platinum Drugs Which Can Be Accumulated or Activated in the Tumor Tissue. Anticancer Agents Med Chem. 2007;7(1):55–73. doi: 10.2174/187152007779314017 |
| [4] |
Galanski M., Keppler B. Searching for the Magic Bullet: Anticancer Platinum Drugs Which Can Be Accumulated or Activated in the Tumor Tissue // Anticancer Agents Med Chem. 2007. Vol. 7, N 1. P. 55–73. doi: 10.2174/187152007779314017 |
| [5] |
Langer T, Zehnhoff-Dinnesen A, Radtke S, et al. Understanding platinum-induced ototoxicity. Trends Pharmacol Sci. 2013;34(8):458–469. doi: 10.1016/j.tips.2013.05.006 |
| [6] |
Langer T., Zehnhoff-Dinnesen A., Radtke S., et al. Understanding platinum-induced ototoxicity // Trends Pharmacol Sci. 2013. Vol. 34, N 8. P. 458–469. doi: 10.1016/j.tips.2013.05.006 |
| [7] |
Johnstone T. Suntharalingam K, Lippard S. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev. 2016;116(5):3436–3486. doi: 10.1021/acs.chemrev.5b00597 |
| [8] |
Johnstone T.C. Suntharalingam K., Lippard S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs // Chem Rev. 2016. Vol. 116, N 5. P. 3436–3486. doi: 10.1021/acs.chemrev.5b00597 |
| [9] |
Spector D, Krasnovskaya O, Pavlov K, et al. Pt(IV) prodrugs with NSAIDs as axial ligands. Int J Mol Sci. 2021;22(8):3817. doi: 10.3390/ijms22083817 |
| [10] |
Spector D., Krasnovskaya O., Pavlov K., et al. Pt(IV) prodrugs with NSAIDs as axial ligands // Int J Mol Sci. 2021. Vol. 22, N 8. P. 3817. doi: 10.3390/ijms22083817 |
| [11] |
Spector DV, Pavlov KG, Akasov RA, et al. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J Med Chem. 2022;65(12):8277–8244. doi: 10.1021/acs.jmedchem.1c02136 |
| [12] |
Spector D.V., Pavlov K.G., Akasov R.A., et al. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position // J Med Chem. 2022. Vol. 65. N 12. P. 8277–8244. doi: 10.1021/acs.jmedchem.1c02136 |
| [13] |
Pham TC, Nguyen VN, Choi Y, et al. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev. 2021;121(21):13454–13619. doi: 10.1021/acs.chemrev.1c00381 |
| [14] |
Pham T.C., Nguyen V.N., Choi Y., et al. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy // Chem Rev. 2021. Vol. 121. N 21. P. 13454–13619. doi: 10.1021/acs.chemrev.1c00381 |
| [15] |
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA: Cancer J Clin. 2011;61(4):250–281. doi: 10.3322/caac.20114 |
| [16] |
Agostinis P., Berg K., Cengel K. A., et al. Photodynamic therapy of cancer: An update // CA: Cancer J Clin. 2011. Vol. 61. N 4. P. 250–281. doi: 10.3322/caac.20114 |
| [17] |
Koudinova NV, Pinthus JH, Brandis A, et al. Photodynamic therapy with Pd-bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer. 2003;104(6):782–789. doi: 10.1002/ijc.11002 |
| [18] |
Koudinova N.V., Pinthus J.H., Brandis A., et al. Photodynamic therapy with Pd-bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts // Int J Cancer. 2003. Vol. 104. N 6. P. 782–789. doi: 10.1002/ijc.11002 |
| [19] |
Eljamel MS, Goodman C, Moseley H. ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci. 2008;23(4):361–367. doi: 10.1007/s10103-007-0494-2 |
| [20] |
Eljamel M.S., Goodman C., Moseley H. ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial // Lasers Med Sci. 2008. Vol. 23. N 4. P. 361–367. doi: 10.1007/s10103-007-0494-2 |
| [21] |
Spector D, Pavlov K, Beloglazkina E, Krasnovskaya O. Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs. Int J Mol Sci. 2022;23(23):14511. doi: 10.3390/ijms232314511 |
| [22] |
Spector D., Pavlov K., Beloglazkina E., Krasnovskaya O. Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs // Int J Mol Sci. 2022. Vol. 23, N 23. P. 14511. doi: 10.3390/ijms232314511 |
| [23] |
Spector D, Bubley A, Zharova A, et al. Light-Responsive Pt(IV) Prodrugs with Controlled Photoactivation and Low Dark Toxicity. ACS Applied Bio Materials. 2024;7(5):3431–3440. doi: 10.1021/acsabm.4c00345 |
| [24] |
Spector D., Bubley A., Zharova A., et al. Light-Responsive Pt(IV) Prodrugs with Controlled Photoactivation and Low Dark Toxicity // ACS Applied Bio Materials. 2024. Vol. 7, N 5. P. 3431–3440. doi: 10.1021/acsabm.4c00345 |
| [25] |
Wang N, Deng Z, Zhu Q, et al. An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chem Sci. 2021;12(43):14353–14362. doi: 10.1039/d1sc02941j |
| [26] |
Wang N., Deng Z., Zhu Q., et al. An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response // Chem Sci. 2021. Vol. 12, N 43. P. 14353–14362. doi: 10.1039/d1sc02941j |
| [27] |
Deng Z, Li H, Chen S, et al. Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner. Nat Chem. 2023;15:930–939. doi: 10.1038/s41557-023-01242-w |
| [28] |
Deng Z., Li H., Chen S., et al. Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner // Nat Chem. 2023. Vol. 15. P. 930–939. doi: 10.1038/s41557-023-01242-w |
| [29] |
Krasnovskaya OO, Akasov RA, Spector DV, et al. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS App Mater Interfaces. 2023;15(10):12882–12894. doi: 10.1021/acsami.3c01771 |
| [30] |
Krasnovskaya O.O., Akasov R.A., Spector D.V., et al. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug // ACS App Mater Interfaces. 2023. Vol. 15, N 10. P. 12882–12894. doi: 10.1021/acsami.3c01771 |
| [31] |
Babak MV, Zhi Y, Czarny B, et al. Dual-Targeting Dual-Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity. Angewandte Chemie. 2019. Vol. 131, № 24. P. 8193–8198. doi: 10.1002/anie.201903112 |
| [32] |
Babak M.V., Zhi Y., Czarny B., et al. Dual-Targeting Dual-Action Platinum(IV) Platform for Enhanced Anticancer Activity and Reduced Nephrotoxicity // Angewandte Chemie. 2019. Vol. 131, N 24. P. 8193–8198. doi: 10.1002/anie.201903112 |
| [33] |
Spector DV, Bubley AA, Beloglazkina EK, Krasnovskaya OO. Pt(IV) prodrugs as an alternative to Pt(II) drugs: synthesis and biological activity. Russ Chem Rev. 2023;92:5096. doi: 10.59761/RCR5096 |
| [34] |
Spector D.V., Bubley A.A., Beloglazkina E.K., Krasnovskaya O.O. Pt(IV) prodrugs as an alternative to Pt(II) drugs: synthesis and biological activity // Russ Chem Rev. 2023. Vol. 92. P. 5096. doi: 10.59761/RCR5096 |
| [35] |
Stewart J. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104(1):10–14. doi: 10.1016/0003-2697(80)90269-9 |
| [36] |
Stewart J. Colorimetric determination of phospholipids with ammonium ferrothiocyanate // Anal Biochem. 1980. Vol. 104, N 1. P. 10–14. doi: 10.1016/0003-2697(80)90269-9 |
| [37] |
Nikitin AA, Yurenya AY, Gabbasov RR, et al. Effects of Macromolecular Crowding on Nanoparticle Diffusion: New Insights from Mössbauer Spectroscopy. J Phys Chem Lett. 2021;12(29):6804–6811. doi: 10.1021/acs.jpclett.1c01984 |
| [38] |
Nikitin A.A., Yurenya A.Y., Gabbasov R.R., et al. Effects of Macromolecular Crowding on Nanoparticle Diffusion: New Insights from Mössbauer Spectroscopy // J Phys Chem Lett. 2021. Vol. 12, N 29. P. 6804–6811. doi: 10.1021/acs.jpclett.1c01984 |
| [39] |
van Moorsel C, Pinedo H, Veerman G, et al. Scheduling of gemcitabine and cisplatin in Lewis Lung tumour bearing mice. Eur J Cancer. 1999;35(5):808–814. doi: 10.1016/s0959-8049(99)00004-0 |
| [40] |
van Moorsel C., Pinedo H., Veerman G., et al. Scheduling of gemcitabine and cisplatin in Lewis Lung tumour bearing mice // Eur J Cancer. 1999. Vol. 35. N 5. P. 808–814. doi: 10.1016/s0959-8049(99)00004-0 |
| [41] |
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Molec Sci. 2021;22(23):13011. doi: 10.3390/ijms222313011 |
| [42] |
Drozdov A.S., Nikitin P.I., Rozenberg J.M. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen // Int J Molec Sci. 2021. Vol. 22, N 23. P. 13011. doi: 10.3390/ijms222313011 |
| [43] |
Cataldi M, Vigliotti C, Mosca T, et al. Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int J Molec Sci. 2017;18(6):1249. doi: 10.3390/ijms18061249 |
| [44] |
Cataldi M., Vigliotti C., Mosca T., et al. Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes // Int J Molec Sci. 2017. Vol. 18, N 6. P. 1249. doi: 10.3390/ijms18061249 |
| [45] |
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel). 2020;12(2):295. doi: 10.3390/cancers12020295 |
| [46] |
Darguzyte M., Drude N., Lammers T., Kiessling F. Riboflavin-Targeted Drug Delivery // Cancers (Basel). 2020. Vol. 12, N 2. P. 295. doi: 10.3390/cancers12020295 |
| [47] |
Cao Q, Zhou D, Pan Z, et al. CAIXplatins: Highly Potent Platinum(IV) Prodrugs Selective Against Carbonic Anhydrase IX for the Treatment of Hypoxic Tumors. Angew Chem Int Ed Engl. 2020;59(42):18556–18562. doi: 10.1002/anie.202005362 |
| [48] |
Cao Q., Zhou D., Pan Z., et al. CAIXplatins: Highly Potent Platinum(IV) Prodrugs Selective Against Carbonic Anhydrase IX for the Treatment of Hypoxic Tumors // Angew Chem Int Ed Engl. 2020. Vol. 59, N 42. P. 18556–18562. doi: 10.1002/anie.202005362 |
| [49] |
Song X, Ma Z, Wu Y, et al. New NSAID-Pt(IV) prodrugs to suppress metastasis and invasion of tumor cells and enhance anti-tumor effect in vitro and in vivo. Eur J Med Chem. 2019;167:377–387. doi: 10.1016/j.ejmech.2019.02.041 |
| [50] |
Song X., Ma Z., Wu Y., et al. New NSAID-Pt(IV) prodrugs to suppress metastasis and invasion of tumor cells and enhance anti-tumor effect in vitro and in vivo // Eur J Med Chem. 2019. Vol. 167. P. 377–387. doi: 10.1016/j.ejmech.2019.02.041 |
| [51] |
Fronik P, Poetsch I, Kastner A, et al. Structure-Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. J Med Chem. 2021;64(16):12132–12151. doi: 10.1021/acs.jmedchem.1c00770 |
| [52] |
Fronik P., Poetsch I., Kastner A., et al. Structure-Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands // J Med Chem. 2021. Vol. 64, N 16. P. 12132–12151. doi: 10.1021/acs.jmedchem.1c00770 |
Eco-Vector
/
| 〈 |
|
〉 |