Possibilities and prospects of using exogenous nucleases in cancer therapy

Maria N. Filimonova , Raniya R. Khadyullina , Emil R. Bulatov

Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (2) : 116 -129.

PDF
Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (2) : 116 -129. DOI: 10.17816/onco634753
Reviews
review-article

Possibilities and prospects of using exogenous nucleases in cancer therapy

Author information +
History +
PDF

Abstract

This literature review provides current data on the oncosuppressive effect of exogenous nucleases derived from various sources. Exogenous nucleases, such as RNase A, BS-RNase, onconase, and DNase I, are capable of degrading low-molecular extracellular DNA and RNA circulating in blood plasma, which may significantly reduce the risk of metastasis. The role of extracellular DNA and RNA in oncogenesis, as well as the impact of exogenous nucleases on their levels, have been described. The review explores the prospects of using nucleases in combination with other therapeutic methods, such as chemotherapy and radiation therapy, to enhance their effectiveness and reduce side effects. In addition, the targets and mechanisms of action of nucleases, as well as their potential for combined use with other therapeutic agents, are considered. The review concludes that exogenous nucleases have significant potential in the treatment of cancer.

Keywords

nucleases / RNase A / BS-RNase / onconase / DNase I / binase / actibind / Serratia marcescens nuclease / oncospecific DNA and RNA / genometastatic theory of cancer

Cite this article

Download citation ▾
Maria N. Filimonova, Raniya R. Khadyullina, Emil R. Bulatov. Possibilities and prospects of using exogenous nucleases in cancer therapy. Russian Journal of Oncology, 2024, 29(2): 116-129 DOI:10.17816/onco634753

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

García-Olmo D, García-Olmo DC. Functionality of Circulating DNA. The Hypothesis of Genometastasis. Ann NY Acad Sci. 2001;945:265–275. doi: 10.1111/j.1749-6632.2001.tb03895.x

[2]

García-Olmo D., García-Olmo D.C. Functionality of Circulating DNA. The Hypothesis of Genometastasis // Ann NY Acad Sci. 2001. Vol. 945. P. 265–275. doi: 10.1111/j.1749-6632.2001.tb03895.x

[3]

García-Olmo DC, García-Olmo D. Biologicall role of cell — free nucleic acids in cancer. The Theory of Genometastasis. Crit Rev Oncog. 2013;18(1-2):153–161. doi: 10.1615/critrevoncog.v18.i1-2.90

[4]

García-Olmo D.C., García-Olmo D. Biologicall role of cell — free nucleic acids in cancer. The Theory of Genometastasis // Crit Rev Oncog. 2013. Vol. 18, N 1-2. P. 153–161. doi: 10.1615/critrevoncog.v18.i1-2.90

[5]

Carreira PE, Richardson SR, Faulkner GJ. L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J. 2014;281(1):63–73. doi: 10.1111/febs.12601

[6]

Carreira P.E., Richardson S.R., Faulkner G.J. L1 retrotransposons, cancer stem cells and oncogenesis // FEBS J. 2014. Vol. 281, N 1. P. 63–73. doi: 10.1111/febs.12601

[7]

Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer — a survey. Biochim Biophys Acta. 2007;1775(1):181–232. doi: 10.1016/j.bbcan.2006.10.001

[8]

Fleischhacker M., Schmidt B. Circulating nucleic acids (CNAs) and cancer — a survey // Biochim Biophys Acta. 2007. Vol. 1775, N 1. P. 181–232. doi: 10.1016/j.bbcan.2006.10.001

[9]

Ryan BM, Lefort F, McManus R, et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut. 2003;52(1):101–118. doi: 10.1136/gut.52.1.101

[10]

Ryan B.M., Lefort F., McManus R., et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up // Gut. 2003. Vol. 52, N 1. P. 101–118. doi: 10.1136/gut.52.1.101

[11]

Dong-Dong L, Xi-Ran Z. Plasma 249Ser p53 mutation in patients with hepatocellular carcinoma residing in a high risk area. J Cell Mol Med. 2003;7(1):89–92. doi: 10.1111/j.1582-4934.2003.tb00207.x

[12]

Dong-Dong L., Xi-Ran Z. Plasma 249Ser p53 mutation in patients with hepatocellular carcinoma residing in a high risk area // J Cell Mol Med. 2003. Vol. 7, N 1. P. 89–92. doi: 10.1111/j.1582-4934.2003.tb00207.x

[13]

Deligezer U, Yaman F, Erten N, et al. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clinica Chimica Acta. 2003;335(1-2):89–94. doi: 10.1016/s0009-8981(03)00279-1

[14]

Deligezer U., Yaman F., Erten N., et al. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients // Clinica Chimica Acta. 2003. Vol. 335, N 1-2. P. 89–94. doi: 10.1016/s0009-8981(03)00279-1

[15]

Holdenrieder S, Stieber P. Therapy control in oncology by circulating nucleosomes. Ann NY Acad Scie. 2004;1022:211–216. doi: 10.1196/annals.1318.032

[16]

Holdenrieder S., Stieber P. Therapy control in oncology by circulating nucleosomes // Ann NY Acad Scie. 2004. Vol. 1022. P. 211–216. doi: 10.1196/annals.1318.032

[17]

Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, et al. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model. PLoS ONE. 2012;7(12):e52754. doi: 10.1371/journal.pone.0052754

[18]

Trejo-Becerril C., Perez-Cardenas E., Taja-Chayeb L., et al. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model // PLoS ONE. 2012. Vol. 7, N 12. P. e52754. doi: 10.1371/journal.pone.0052754

[19]

Vasilyeva IN, Bespalov VG. Role of extracellular DNA in the appearance and development of malignant tumors and possibilities of its use in the diagnosis and treatment of cancer. Problems in Oncology. 2013;59(6):673–681. EDN: RTURKV

[20]

Васильева И.Н., Беспалов В.Г. Роль внеклеточной ДНК в возникновении развитии злокачественных опухолей и возможности ее использования в диагностике и лечении онкологических заболеваний // Вопросы онкологии. 2013. Т. 59, № 6. С. 673–681. EDN: RTURKV

[21]

Watson K, Gooderham NJ, Davies DS, et al. Nucleosomes bind to cell surface proteoglycans. J Biol Chem. 1999;274(31):21707–21713. doi: 10.1074/jbc.274.31.21707

[22]

Watson K., Gooderham N.J., Davies D.S., et al. Nucleosomes bind to cell surface proteoglycans // J Biol Chem. 1999. Vol. 274, N 31. P. 21707–21713. doi: 10.1074/jbc.274.31.21707

[23]

Gaiffe E, Prétet JL, Launay S, et al. Apoptotic HPV positive cancer cells exhibit transforming properties. PLoS ONE. 2012;7(5):e36766. doi: 10.1371/journal.pone.0036766

[24]

Gaiffe E., Prétet J.L., Launay S., et al. Apoptotic HPV positive cancer cells exhibit transforming properties // PLoS ONE. 2012. Vol. 7, N 5. P. e36766. doi: 10.1371/journal.pone.0036766

[25]

Gahan P, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct. 2010;28(7):529–538. doi: 10.1002/cbf.1690

[26]

Gahan P., Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger // Cell Biochem Funct. 2010. Vol. 28, N 7. P. 529–538. doi: 10.1002/cbf.1690

[27]

Dhondt B, Rousseau Q, De Wever O, et al. Function of extracellular vesicle-associated miRNAs in metastasis. Cell Tissue Res. 2016;365(3):621–641. doi: 10.1007/s00441-016-2430-x

[28]

Dhondt B., Rousseau Q., De Wever O., et al. Function of extracellular vesicle-associated miRNAs in metastasis // Cell Tissue Res. 2016. Vol. 365, N 3. P. 621–641. doi: 10.1007/s00441-016-2430-x

[29]

Kogure T, Lin W, Yan I, et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237–1248. doi: 10.1002/hep.24504

[30]

Kogure T., Lin W., Yan I., et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth // Hepatology. 2011. Vol. 54, N 4. P. 1237–1248. doi: 10.1002/hep.24504

[31]

Kosaka N, Iguchi H, Hagiwara K, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–10859. doi: 10.1074/jbc.M112.446831

[32]

Kosaka N., Iguchi H., Hagiwara K., et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis // J Biol Chem. 2013. Vol. 288, N 15. P. 10849–10859. doi: 10.1074/jbc.M112.446831

[33]

Iguchi H, Fong N, Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol. 2010;3(5):478–481. doi: 10.4161/cib.3.5.12693

[34]

Iguchi H., Fong N., Ochiya T. Secretory microRNAs as a versatile communication tool // Commun Integr Biol. 2010. Vol. 3, N 5. P. 478–481. doi: 10.4161/cib.3.5.12693

[35]

Savelyeva A, Baryakin D, Chikova E, et al. Vesicular and extra-vesicular RNAs of human blood plasma. Adv Exp Med Biol. 2016;924:117–119. doi: 10.1007/978-3-319-42044-8_23

[36]

Savelyeva A., Baryakin D., Chikova E., et al. Vesicular and extra-vesicular RNAs of human blood plasma // Adv Exp Med Biol. 2016. Vol. 924. P. 117–119. doi: 10.1007/978-3-319-42044-8_23

[37]

Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–17452. doi: 10.1074/jbc.M110.107821

[38]

Kosaka N., Iguchi H., Yoshioka Y., et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells // J Biol Chem. 2010. Vol. 285, N 23. P. 17442–17452. doi: 10.1074/jbc.M110.107821

[39]

Volinia S, Calin GA, Liu CG, et al. A microRNAs expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–2261. doi: 10.1073/pnas.0510565103

[40]

Volinia S., Calin G.A., Liu C.G., et al. A microRNAs expression signature of human solid tumors defines cancer gene targets // Proc Natl Acad Sci USA. 2006. Vol. 103, N 7. P. 2257–2261. doi: 10.1073/pnas.0510565103

[41]

Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol. 2009;625(1-3):181–189. doi: 10.1016/j.ejphar.2009.06.067

[42]

Ardelt W., Ardelt B., Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy // Eur J Pharmacol. 2009. Vol. 625, N 1-3. P. 181–189. doi: 10.1016/j.ejphar.2009.06.067

[43]

Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Frontiers in Pharm. 2019;10. doi: 10.3389/fphar.2019.01019

[44]

Mironova N., Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases // Frontiers in Pharm. 2019. Vol. 10. doi: 10.3389/fphar.2019.01019

[45]

Patutina O, Miroshnichenko S, Mironova N, et al. Catalytic Knockdown of miR-21 by Artificial Ribonuclease: Biological Performance in Tumor Model. Frontiers in Pharm. 2019;10. doi: 10.3389/fphar.2019.00879

[46]

Patutina O., Miroshnichenko S., Mironova N., et al. Catalytic Knockdown of miR-21 by Artificial Ribonuclease: Biological Performance in Tumor Model // Frontiers in Pharm. 2019. Vol. 10. doi: 10.3389/fphar.2019.00879

[47]

Vickers K, Palmisano B, Shoucri B, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–433. doi: 10.1038/ncb2210

[48]

Vickers K., Palmisano B., Shoucri B., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat Cell Biol. 2011. Vol. 13, N 4. P. 423–433. doi: 10.1038/ncb2210

[49]

Castro J, Ribó M, Vilanova M, et al. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents. Pharmaceutics. 2021;13(1):82–99. doi: 10.3390/pharmaceutics13010082

[50]

Castro J., Ribó M., Vilanova M., et al. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents // Pharmaceutics. 2021. Vol. 13, N 1. P. 82–99. doi: 10.3390/pharmaceutics13010082

[51]

Ledoux L. Action of ribonuclease on certain ascites tumours. Nature. 1955;175(4449):258–259. doi: 10.1038/175258b0

[52]

Ledoux L. Action of ribonuclease on certain ascites tumours // Nature. 1955. Vol. 175, N 4449. P. 258–259. doi: 10.1038/175258b0

[53]

Soucek J, Pouckova P, Matousek J, et al. Antitumor action of bovine seminal ribonuclease. Neoplasma. 1996;43(5):335–340.

[54]

Soucek J., Pouckova P., Matousek J., et al. Antitumor action of bovine seminal ribonuclease // Neoplasma. 1996. Vol. 43, N 5. P. 335–340.

[55]

Costanzi J, Sidransky D, Navon A, et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–650. doi: 10.1080/07357900500283143

[56]

Costanzi J., Sidransky D., Navon A., et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase // Cancer Invest. 2005. Vol. 23, N 7. P. 643–650. doi: 10.1080/07357900500283143

[57]

Roiz L, Smirnoff P, Bar-Eli M, et al. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics. Cancer. 2006;106(10):2295–2208. doi: 10.1002/cncr.21878

[58]

Roiz L., Smirnoff P., Bar-Eli M., et al. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics // Cancer. 2006. Vol. 106, N 10. P. 2295–2208. doi: 10.1002/cncr.21878

[59]

Ilinskaya ON, Zelenikhin PV, Petrushanko IY, et al. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response. Biochem Biophys Res Commun. 2007;361(4):1000–1005. doi: 10.1016/j.bbrc.2007.07.143

[60]

Ilinskaya O.N., Zelenikhin P.V., Petrushanko I.Y., et al. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response // Biochem Biophys Res Commun. 2007. Vol. 361, N 4. P. 1000–1005. doi: 10.1016/j.bbrc.2007.07.143

[61]

Mohamed ISE, Sen’kova AV, Markov OV, et al. Bovine Pancreatic RNase A: An Insight into the Mechanism of Antitumor Activity In Vitro and In Vivo. Pharmaceutics. 2022;14(6):1173. doi: 10.3390/pharmaceutics14061173

[62]

Mohamed I.S.E., Sen’kova A.V., Markov O.V., et al. Bovine Pancreatic RNase A: An Insight into the Mechanism of Antitumor Activity In Vitro and In Vivo // Pharmaceutics. 2022. Vol. 14, N 6. P. 1173. doi: 10.3390/pharmaceutics14061173

[63]

Mironova N, Patutina O, Brenner E, et al. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy. PLoS One. 2013;8(12):e83482. doi: 10.1371/journal.pone.0083482

[64]

Mironova N., Patutina O., Brenner E., et al. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy // PLoS One. 2013. Vol. 8, N 12. P. e83482. doi: 10.1371/journal.pone.0083482

[65]

Kotchetkov R, Cinatl J, Krivtchik AA, et al. Selective activity of BS-RNase against anaplastic thyroid cancer. Anticancer Res. 2001;21(2А):1035–1042.

[66]

Kotchetkov R., Cinatl J., Krivtchik A.A., et al. Selective activity of BS-RNase against anaplastic thyroid cancer // Anticancer Res. 2001. Vol. 21, N 2А. P. 1035–1042.

[67]

Mikulski S, Costanzi J, Vogelzang N, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–281. doi: 10.1200/JCO.2002.20.1.274

[68]

Mikulski S., Costanzi J., Vogelzang N., et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma // J Clin Oncol. 2002. Vol. 20, N 1. P. 274–281. doi: 10.1200/JCO.2002.20.1.274

[69]

Pokrovskii VS, Treshchalina EM, Andronova NV, Deev SM. Ribonucleases with Antiproliferative Properties: Molecular Biological and Biochemical Characteristics. Clinical Oncohematology. 2016;9(2):130–137. doi: 10.21320/2500-2139-2016-9-2-130-137

[70]

Покровский В.С., Трещалина Е.М., Андронова Н.В., Деев С.М. Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства // Клиническая онкогематология. 2016. Т. 9, № 2. С. 130–137. doi: 10.21320/2500-2139-2016-9-2-130-137

[71]

Kanwar SS, Kumar R. Ribonuclease as Anticancer Therapeutics. Enz Eng. 2017;6(1):162. doi: 10.4172/2329-6674.1000162

[72]

Kanwar S.S., Kumar R. Ribonuclease as Anticancer Therapeutics // Enz Eng. 2017. Vol. 6, N 1. P. 162. doi: 10.4172/2329-6674.1000162

[73]

Grabarek J, Ardelt B, Du L, et al. Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase). Exp Cell Res. 2002;278(1):61–71. doi: 10.1006/excr.2002.5568

[74]

Grabarek J., Ardelt B., Du L., et al. Activation of caspases and serine proteases during apoptosis induced by onconase (Ranpirnase) // Exp Cell Res. 2002. Vol. 278, N 1. P. 61–71. doi: 10.1006/excr.2002.5568

[75]

Ita M, Halicka HD, Tanaka T, et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther. 2008;7(7):1104–1108. doi: 10.4161/cbt.7.7.6172

[76]

Ita M., Halicka H.D., Tanaka T., et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines // Cancer Biol Ther. 2008. Vol. 7, N 7. P. 1104–1108. doi: 10.4161/cbt.7.7.6172

[77]

Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol. 2004;25(6):1745–1752. doi: 10.3892/ijo.25.6.1745

[78]

Tsai S.Y., Ardelt B., Hsieh T.C., et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB // Int J Oncol. 2004. Vol. 25, N 6. P. 1745–1752. doi: 10.3892/ijo.25.6.1745

[79]

Turcotte R, Lavis L, Raines R. Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J. 2009;276(14):3846–3857. doi: 10.1111/j.1742-4658.2009.07098.x

[80]

Turcotte R., Lavis L., Raines R. Onconase cytotoxicity relies on the distribution of its positive charge // FEBS J. 2009. Vol. 276, N 14. P. 3846–3857. doi: 10.1111/j.1742-4658.2009.07098.x

[81]

Lee I, Kalota A, Gewirtz AM, et al. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007;27(1A):299–307.

[82]

Lee I., Kalota A., Gewirtz A.M., et al. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice // Anticancer Res. 2007. Vol. 27, N 1A. P. 299–307.

[83]

Lee I, Lee YH, Mikulski SM, et al. Effect of Onconase ± Tamoxifen on ASPC-1 Human Pancreatic Tumors in Nude Mice. In: Dunn JF, Swartz HM, editors. Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol. 530. Boston: Springer. doi: 10.1007/978-1-4615-0075-9_18

[84]

Lee I., Lee Y.H., Mikulski S.M., et al. Effect of Onconase ± Tamoxifen on ASPC-1 Human Pancreatic Tumors in Nude Mice. In: Dunn J.F., Swartz H.M., editors. Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol. 530. Boston : Springer. doi: 10.1007/978-1-4615-0075-9_18

[85]

Mikulski S, Ardelt W, Shogen K, et al. Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J Natl Cancer Inst. 1990;82(2):151–153. doi: 10.1093/jnci/82.2.151-a

[86]

Mikulski S., Ardelt W., Shogen K., et al. Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos // J Natl Cancer Inst. 1990. Vol. 82, N 2. P. 151–153. doi: 10.1093/jnci/82.2.151-a

[87]

Mitkevich VA, Petrushanko IY, Spirin PV, et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 2011;10(23):4090–4097. doi: 10.4161/cc.10.23.18210

[88]

Mitkevich V.A., Petrushanko I.Y., Spirin P.V., et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes // Cell Cycle. 2011. Vol. 10, N 23. P. 4090–4097. doi: 10.4161/cc.10.23.18210

[89]

Mironova NL, Petrushanko IY, Patutina OA, et al. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 2013;12(13):2120–2131. doi: 10.4161/cc.25164

[90]

Mironova N.L., Petrushanko I.Y., Patutina O.A., et al. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells // Cell Cycle. 2013. Vol. 12, N 13. P. 2120–2131. doi: 10.4161/cc.25164

[91]

Edelweiss E, Balandin T, Ivanova J, et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE. 2008;3(6):e2434. doi: 10.1371/journal.pone.0002434

[92]

Edelweiss E., Balandin T., Ivanova J., et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells // PLoS ONE. 2008. Vol. 3, N 6. P. e2434. doi: 10.1371/journal.pone.0002434

[93]

Alcazar-Leyva S, Ceron E, Masso F, Montano LF, et al. Incubation with DNase I inhibits tumor cell proliferation. Med Sci Monit. 2009;15(2):51–55.

[94]

Alcazar-Leyva S., Ceron E., Masso F., Montano L.F., et al. Incubation with DNase I inhibits tumor cell proliferation // Med Sci Monit. 2009. Vol. 15, N 2. P. 51–55.

[95]

Alexeeva LA, Patutina OA, Sen’kova AV, et al. Inhibition of Invasive Properties of Murine Melanoma by Bovine Pancreatic DNase I In Vitro and In Vivo. Mol Biol (Mosk). 2017;51(4):637–646. doi: 10.7868/S0026898417040024

[96]

Алексеева Л.А., Патутина О.А., Сенькова А.В., и др. Подавление инвазивных свойств меланомы мыши под действием бычьей панкреатической ДНКазы I in vitro и in vivo // Молекулярная биология. 2017. Т. 51, № 4. С. 637–646. doi: 10.7868/S0026898417040024

[97]

Sugihara S, Yamamoto T, Tanaka H, et al. Deoxyribonuclease treatment prevents blood-borne liver metastasis of cutaneously transplanted tumour cells in mice. Br J Cancer. 1993;67(1):66–70. doi: 10.1038/bjc.1993.10

[98]

Sugihara S., Yamamoto T., Tanaka H., et al. Deoxyribonuclease treatment prevents blood-borne liver metastasis of cutaneously transplanted tumour cells in mice // Br J Cancer. 1993. Vol. 67, N 1. P. 66–70. doi: 10.1038/bjc.1993.10

[99]

Patent RUS № 2269356 C2/ 10.02.2006. Genkin DD, Tets VV, Tets GV. Method for treating oncological patients. EDN: IOIUYR

[100]

Патент РФ № 2269356 C2/ 10.02.2006. Генкин Д.Д., Тец В.В., Тец Г.В. Способ лечения онкологических заболеваний. EDN: IOIUYR

[101]

Rosner K. DNase1: a new personalized therapy for cancer. Expert Rev Anticancer Ther. 2011;11(7):981–984. doi: 10.1586/era.11.90

[102]

Rosner K. DNase1: a new personalized therapy for cancer // Expert Rev Anticancer Ther. 2011. Vol. 11, N 7. P. 981–984. doi: 10.1586/era.11.90

[103]

Kyune MF. Effect of bacterial nucleases on ascites Ehrlich carcinoma cells in in vitro experiments [dissertation]. Kazan; 1966. (In Russ.) EDN: ZMCRRV

[104]

Кюне М.Ф. Влияние бактериальных нуклеаз на асцитные клетки карциномы Эрлиха в опытах in vitro. Автореферат дис. … кандидат биол. наук. Казань, 1966. EDN: ZMCRRV

[105]

Kurinenko BM, Belyaeva MI, Cherepneva IE, et al. Permeability of dextran-bound nuclease across the vascular barrier and tumor cell envelope. Problems in oncology. 1977;23(5):86–90. (In Russ.)

[106]

Куриненко Б.М., Беляева М.И., Черепнева И.Е., и др. Проницаемость нуклеазы, связанной с декстраном, через сосудистый барьер и оболочку опухолевых клеток // Вопросы онкологии. 1977. Т. 23, № 5. С. 86–90.

[107]

Gabdullina GK. Action of Serratia marcescesn nuclease on cells and growth of Ehrlich ascites tumor [dissertation]. Kyiv; 1980. (In Russ.)

[108]

Габдуллина Г.К. Действие нуклеазы Serratia marcescesn на клетки и рост асцитной опухоли Эрлиха. Автореферат дис. … кандидат биол. наук. Киев, 1980.

[109]

Leshchinskaya I, Balaban N, Egorova G, et al. Isolation and characterization of a highly purified preparation of Serratia marcescens nuclease. Biokhimiya. 1974;46(9):95–100. (In Russ.)

[110]

Лещинская И., Балабан Н., Егорова Г., и др. Выделение и характеристика высокоочищенного препарата нуклеазы Serratia marcescens // Биохимия. 1974. Т. 46, № 9. С. 95–100.

[111]

Bracale A, Castaldi F, Nitsch L, et al. A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action. Eur J Biochm. 2003;270(9):1980–1987. doi: 10.1046/j.1432-1033.2003.03567.x

[112]

Bracale A., Castaldi F., Nitsch L., et al. A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action // Eur J Biochm. 2003. Vol. 270, N 9. P. 1980–1987. doi: 10.1046/j.1432-1033.2003.03567.x

[113]

Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNA by a cytotoxic member of the RNase A family. J Biol Chem. 2002;277(17):15142–15146. doi: 10.1074/jbc.M108115200

[114]

Saxena S.K., Sirdeshmukh R., Ardelt W., et al. Entry into cells and selective degradation of tRNA by a cytotoxic member of the RNase A family // J Biol Chem. 2002. Vol. 277, N 17. P. 15142–15146. doi: 10.1074/jbc.M108115200

[115]

Saxena A, Saxena SK, Shogen K. Effect of Onconase on doublestranded RNA in vitro. Anticancer Res. 2009;29(4):1067–1071.

[116]

Saxena A., Saxena S.K., Shogen K. Effect of Onconase on doublestranded RNA in vitro // Anticancer Res. 2009. Vol. 29, N 4. P. 1067–1071.

[117]

Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle. 2003;2(1):22–24. doi: 10.4161/cc.2.1.232

[118]

Ardelt B., Ardelt W., Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi) // Cell Cycle. 2003. Vol. 2, N 1. P. 22–24. doi: 10.4161/cc.2.1.232

[119]

Marinov I, Soucek J. Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines. Neoplasma. 2000;47(5):294–298.

[120]

Marinov I., Soucek J. Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines // Neoplasma. 2000. Vol. 47, N 5. P. 294–298.

[121]

Spalletti-Cernia D, Sorrentino R, Di Gaetano S, et al. Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis. J Clin Endocrinol Metab. 2003;88(6):2900–2907. doi: 10.1210/jc.2002-020373

[122]

Spalletti-Cernia D., Sorrentino R., Di Gaetano S., et al. Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis // J Clin Endocrinol Metab. 2003. Vol. 88, N 6. P. 2900–2907. doi: 10.1210/jc.2002-020373

[123]

Mitkevich VA, Tchurikov NA, Zelenikhin PV, et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J. 2010;277(1):186–196. doi: 10.1111/j.1742-4658.2009.07471.x

[124]

Mitkevich V.A., Tchurikov N.A., Zelenikhin P.V., et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs // FEBS J. 2010. Vol. 277, N 1. P. 186–196. doi: 10.1111/j.1742-4658.2009.07471.x

[125]

Makarov A, Kolchinski A, Ilinskaya O. Binase and other microbial RNases as potential anticancer agents. BioEssays. 2008;30(8):789–790. doi: 10.1002/bies.20789

[126]

Makarov A., Kolchinski A., Ilinskaya O. Binase and other microbial RNases as potential anticancer agents // BioEssays. 2008. Vol. 30, N 8. P. 789–790. doi: 10.1002/bies.20789

[127]

Ilinskaya O, Decker K, Koschinski A, et al. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current. Toxicology. 2001;156(2-3):101–107. doi: 10.1016/s0300-483x(00)00335-8

[128]

Ilinskaya O., Decker K., Koschinski A., et al. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current // Toxicology. 2001. Vol. 156, N 2-3. P. 101–107. doi: 10.1016/s0300-483x(00)00335-8

[129]

Schwartz B, Shoseyov O, Vladislava O, et al. ACTIBIND, a T2 RNase, Competes with Angiogenin and Inhibits Human Melanoma Growth, Angiogenesis, and Metastasis. Cancer Res. 2007;67(11):5258–5266. doi: 10.1158/0008-5472.CAN-07-0129

[130]

Schwartz B., Shoseyov O., Vladislava O., et al. ACTIBIND, a T2 RNase, Competes with Angiogenin and Inhibits Human Melanoma Growth, Angiogenesis, and Metastasis // Cancer Res. 2007. Vol. 67, N 11. P. 5258–5266. doi: 10.1158/0008-5472.CAN-07-0129

[131]

Alekseeva L, Mironova N, Brenner E, et al. Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment. PLoS ONE. 2017;12(2):e0171988. doi: 10.1371/journal.pone.0171988

[132]

Alekseeva L., Mironova N., Brenner E., et al. Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment // PLoS ONE. 2017. Vol. 12, N 2. P. e0171988. doi: 10.1371/journal.pone.0171988

[133]

Wen F, Shen A, Choi A, et al. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013;73(14):4256–4266. doi: 10.1158/0008-5472.CAN-12-3287

[134]

Wen F., Shen A., Choi A., et al. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis // Cancer Res. 2013. Vol. 73, N 14. P. 4256–4266. doi: 10.1158/0008-5472.CAN-12-3287

[135]

Alekseeva L, Sen’kova A, Zenkova M, et al. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. Mol Ther Nucleic Acids. 2020;5(20):50–61. doi: 10.1016/j.omtn.2020.01.035

[136]

Alekseeva L., Sen’kova A., Zenkova M., et al. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models // Mol Ther Nucleic Acids. 2020. Vol. 5, N 20. P. 50–61. doi: 10.1016/j.omtn.2020.01.035

[137]

Jianga Z, Penga Z, Liua X, et al. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells. Oncoimmunology. 2022;11(1):2052418. doi: 10.1080/2162402X.2022.2052418

[138]

Jianga Z., Penga Z., Liua X., et al. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells // Oncoimmunology. 2022. Vol. 11, N 1. P. 2052418. doi: 10.1080/2162402X.2022.2052418

[139]

Demkow U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers. 2021;13(17):4495–4512. doi: 10.3390/cancers13174495

[140]

Demkow U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis // Cancers. 2021. Vol. 13, N 17. P. 4495–4512. doi: 10.3390/cancers13174495

[141]

Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci. 2022;23(24):15827. doi: 10.3390/ijms232415827

[142]

Sounbuli K., Mironova N., Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies // Int J Mol Sci. 2022. Vol. 23, N 24. P. 15827. doi: 10.3390/ijms232415827

[143]

Patutina OA, Mironova NL, Ryabchikova EI, et al. Tumoricidal activity of RNase A and DNase I. Acta Naturae. 2010;2(1):88–94.

[144]

Patutina O.A., Mironova N.L., Ryabchikova E.I., et al. Tumoricidal activity of RNase A and DNase I // Acta Naturae. 2010. Vol. 2, N 1. P. 88–94.

[145]

Mikulski S, Viera A, Shogen K. In vitro synergism between a novel ambhibian oocytic ribonuclease (ONCONASE) and tamoxifen, lovastatin and cisplatin in human OVCAR-3 ovarian carcinoma cell line. Int J Oncol. 1992;1(7):779–785.

[146]

Mikulski S., Viera A., Shogen K. In vitro synergism between a novel ambhibian oocytic ribonuclease (ONCONASE) and tamoxifen, lovastatin and cisplatin in human OVCAR-3 ovarian carcinoma cell line // Int J Oncol. 1992. Vol. 1, N 7. P. 779–785.

[147]

Mikulski S, Viera A, Ardelt W, et al. Tamoxifen and trifluroperazine(Stelazine) potentiates cytostatic/ cytotoxic effects of P-30 protein, a novel protein possessing antitumor activity. Cell Tissue Kinet. 1990;23(3):237–246. doi: 10.1111/j.1365-2184.1990.tb01119.x

[148]

Mikulski S., Viera A., Ardelt W., et al. Tamoxifen and trifluroperazine(Stelazine) potentiates cytostatic/ cytotoxic effects of P-30 protein, a novel protein possessing antitumor activity // Cell Tissue Kinet. 1990. Vol. 23, N 3. P. 237–246. doi: 10.1111/j.1365-2184.1990.tb01119.x

[149]

Rybak SM, Pearson J, Fogler W, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with ONCONASE an antitumor ribonuclease. J Natl Cancer Inst. 1996;88(11):747–753. doi: 10.1093/jnci/88.11.747

[150]

Rybak S.M., Pearson J., Fogler W., et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with ONCONASE an antitumor ribonuclease // J Natl Cancer Inst. 1996. Vol. 88, N 11. P. 747–753. doi: 10.1093/jnci/88.11.747

[151]

Lee J, Raines R. Ribonucleases as Novel Chemotherapeutics: The Ranpirnase Example. BioDrugs. 2008;22(1):53–58. doi: 10.2165/00063030-200822010-00006

[152]

Lee J., Raines R. Ribonucleases as Novel Chemotherapeutics: The Ranpirnase Example // BioDrugs. 2008. Vol. 22, N 1. P. 53–58. doi: 10.2165/00063030-200822010-00006

[153]

Lee I, Kim DH, Sunar U, et al. The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer. In Vivo. 2007;21(5):721–728.

[154]

Lee I., Kim D.H., Sunar U., et al. The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer // In Vivo. 2007. Vol. 21, N 5. P. 721–728.

Funding

Министерство науки и высшего образования РФ (проект)Ministry of Science and Higher Education of the Russian Federation (draft)(FZSM-2022-0016)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/