Intraoperative staining of malignant lung tumors using bioorganic fluorescent gold nanoclusters bound to aptamers

Galina S. Zamay , Tatiana N. Zamay , Daniil S. Chumakov , Semen A. Sidorov , Aleksey V. Krat , Boris N. Khlebtsov , Irina A. Shchugoreva , Anastasia A. Koshmanova , Ruslan A. Zukov , Nikolai G. Khlebtsov , Anna S. Kichkailo

Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (2) : 82 -92.

PDF (4671KB)
Russian Journal of Oncology ›› 2024, Vol. 29 ›› Issue (2) : 82 -92. DOI: 10.17816/onco633809
Original Study Articles
research-article

Intraoperative staining of malignant lung tumors using bioorganic fluorescent gold nanoclusters bound to aptamers

Author information +
History +
PDF (4671KB)

Abstract

Background: The problem of recurrence, generalization, or metastasis of lung cancer remains relevant to this day, despite the advances in diagnostic and therapeutic methods of treatment. The main method of localized lung cancer treatment is surgery. The volume of resection is determined by the location of the tumor, its spread to surrounding tissues and the status of lymph node damage. However, even after removal of a large part of the lung, metastatic foci may remain in healthy tissue. To improve the effectiveness of diagnostics during surgery, fluorescence-navigated surgery can be used, based on the use of fluorescent dyes, which enables to see even small clusters of malignant cells in the early stages of tumor process development.

Aim: To develop a drug for fluorescence-navigation surgery based on aptamers and fluorescent gold nanoclusters (fluorescence excitation wavelengths are 365–410 nm, emission wavelengths are 615–650 nm).

Materials and Methods: The object of the study is primary cultures of non-small cell lung cancer. Liposomes functionalized with DNA aptamer LC-17 were used to deliver gold nanoclusters stabilized with glutathione (GSH-AuNC) or bovine serum albumin (BSA-AuNC) to lung cancer cells. Electron microscopic images of the synthesized nanoclusters were obtained using transmission electron microscopy. Analysis of the efficiency of tumor cell binding to aptamer-functionalized liposomes containing nanoclusters was performed using flow cytometry Lung adenocarcinoma tissue was used to evaluate the efficiency of fluorescent nanoclusters.

Results: The diameter of BSA-AuNC and GSH-AuNC nanoclusters was 1.8±0.5 nm and 1.5±0.3 nm, respectively. When exciting by light with a wavelength of 365 nm, the maximum fluorescence emission for BSA-AuNCs was 655 nm, and for GSH-AuNCs — 613 nm. The fluorescence quantum yields for BSA-AuNCs and GSH-AuNCs were 6% and 14%, respectively. LC-17 aptamer-functionalized liposomes with included GSH-AuNC and BSA-AuNC effectively bound to lung adenocarcinoma cells and stained them.

Conclusion: The possibilityl of using gold nanoclusters stabilized by GSH-AuNC and BSA-AuNC for fluorescence-guided surgery is demonstrated.

Keywords

aptamer / fluorescent gold nanoclusters / liposomes / fluorescence-guided surgery / lung cancer

Cite this article

Download citation ▾
Galina S. Zamay, Tatiana N. Zamay, Daniil S. Chumakov, Semen A. Sidorov, Aleksey V. Krat, Boris N. Khlebtsov, Irina A. Shchugoreva, Anastasia A. Koshmanova, Ruslan A. Zukov, Nikolai G. Khlebtsov, Anna S. Kichkailo. Intraoperative staining of malignant lung tumors using bioorganic fluorescent gold nanoclusters bound to aptamers. Russian Journal of Oncology, 2024, 29(2): 82-92 DOI:10.17816/onco633809

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Higgins KA, Chino JP, Berry M, et al. Local failure in resected stage N1 lung cancer: implications for adjuvant therapy. International journal of radiation oncology, biology, physics. 2012;83(2):727–733. doi: 10.1016/j.ijrobp.2011.07.018

[2]

Higgins K.A., Chino J.P., Berry M., et al. Local failure in resected stage N1 lung cancer: implications for adjuvant therapy // International journal of radiation oncology, biology, physics. 2012. Vol. 83, N 2. P. 727–733. doi: 10.1016/j.ijrobp.2011.07.018

[3]

Varlotto JM, Yao AN, DeCamp MM, et al. Nodal stage of surgically resected non-small cell lung cancer and its effect on recurrence patterns and overall survival. International journal of radiation oncology, biology, physics. 2015;91(4):765–773. doi: 10.1016/j.ijrobp.2014.12.028

[4]

Varlotto J.M., Yao A.N., DeCamp M.M., et al. Nodal stage of surgically resected non-small cell lung cancer and its effect on recurrence patterns and overall survival // International journal of radiation oncology, biology, physics. 2015. Vol. 91, N 4. P. 765–773. doi: 10.1016/j.ijrobp.2014.12.028

[5]

Burel J, Ayoubi ME, Basté JM, et al. Surgery for lung cancer: postoperative changes and complications—what the Radiologist needs to know. Insights into Imaging. 2021;12:116. doi: 10.1186/s13244-021-01047-w

[6]

Burel J., Ayoubi M.E., Basté J.M., et al. Surgery for lung cancer: postoperative changes and complications—what the Radiologist needs to know // Insights into Imaging. 2021. Vol. 12. P. 116. doi: 10.1186/s13244-021-01047-w

[7]

Jiao J, Zhang J, Yang F, et al. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. European Journal of Pharmaceutics and Biopharmaceutics. 2020;152:123–143. doi: 10.1016/j.ejpb.2020.05.002

[8]

Jiao J., Zhang J., Yang F., et al. Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages // European Journal of Pharmaceutics and Biopharmaceutics. 2020. Vol. 152. P. 123–143. doi: 10.1016/j.ejpb.2020.05.002

[9]

Van Keulen S, Hom M, White H, Rosenthal EL, Baik FM. Evolution of fluorescence-guided surgery. Molecular Imaging and Biology. 2023;25:36–45. doi: 10.1007/s11307-022-01772-8

[10]

Van Keulen S., Hom M., White H., Rosenthal E.L., Baik F.M. Evolution of fluorescence-guided surgery // Molecular Imaging and Biology. 2023. Vol. 25. P. 36–45. doi: 10.1007/s11307-022-01772-8

[11]

Krat AV, Zamay TN, Zamay GS, et al. The use of DNA aptamers in the estimation of the prevalence the tumor process in lung cancer patients. Siberian Medical Review. 2016;5(101):96–98. EDN: XDNMCL

[12]

Крат А.В., Замай Т.Н., Замай Г.С., и др. Использование ДНК-аптамеров в оценке распространенности опухолевого процесса у больных раком легкого // Сибирское медицинское обозрение. 2016. Т. 5, № 101. С. 96–98. EDN: XDNMCL

[13]

Luo Z, Yuan X, Yu Y, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. Journal of the American Chemical Society. 2012;134(40):16662–16670. doi: 10.1021/ja306199p

[14]

Luo Z., Yuan X., Yu Y., et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters // Journal of the American Chemical Society. 2012. Vol. 134, N 40. P. 16662–16670. doi: 10.1021/ja306199p

[15]

Khlebtsov B, Tuchina E, Tuchin V, Khlebtsov N. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus. RSC Advances. 2015;5:61639–61649. doi: 10.1039/C5RA11713E

[16]

Khlebtsov B., Tuchina E., Tuchin V., Khlebtsov N. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus // RSC Advances. 2015. Vol. 5. P. 61639–61649. doi: 10.1039/C5RA11713E

[17]

Zamay GS, Kolovskaya OS, Zamay TN, et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Molecular Therapy. 2015;23(9):1486–1496. doi: 10.1038/mt.2015.108

[18]

Zamay G.S., Kolovskaya O.S., Zamay T.N., et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood // Molecular Therapy. 2015. Vol. 23, N 9. P. 1486–1496. doi: 10.1038/mt.2015.108

[19]

Zamay GS, Ivanchenko T, Zamay TN, et al. DNA-Aptamers for Characterization of Histological Structure of Lung Adenocarcinoma. Molecular Therapy: Nucleic Acid. 2016;17(6):150–162. doi: 10.1016/j.omtn.2016.12.004

[20]

Zamay G.S., Ivanchenko T., Zamay T.N., et al. DNA-Aptamers for Characterization of Histological Structure of Lung Adenocarcinoma // Molecular Therapy: Nucleic Acid. 2016. Vol. 17, N 6. P. 150–162. doi: 10.1016/j.omtn.2016.12.004

[21]

Zamay GS, Zamay TN, Kolovskii VA, et al. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Scientific Reports. 2016;6:34350. doi: 10.1038/srep34350

[22]

Zamay G.S., Zamay T.N., Kolovskii V.A., et al. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples // Scientific Reports. 2016. Vol. 6. P. 34350. doi: 10.1038/srep34350

[23]

Chumakov D, Pylaev T, Avdeeva E, et al. Anticancer properties of gold nanoparticles biosynthesized by reducing of chloroaurate ions with Dunaliella salina aqueous extract. Proc SPIE: Optical and Nano-Technologies for Biology and Medicine. 2020;11457:e1145715. doi: 10.1117/12.2564630

[24]

Chumakov D., Pylaev T., Avdeeva E., et al. Anticancer properties of gold nanoparticles biosynthesized by reducing of chloroaurate ions with Dunaliella salina aqueous extract // Proc SPIE: Optical and Nano-Technologies for Biology and Medicine. 2020. Vol. 11457. P. e1145715. doi: 10.1117/12.2564630

[25]

Saleh SM, Almotiri MK, Ali R. Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu (II) and Hg (II). Journal of Photochemistry and Photobiology A: Chemistry. 2022;426:e113719. doi: 10.1016/j.jphotochem.2021.113719

[26]

Saleh S.M., Almotiri M.K., Ali R. Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu (II) and Hg (II) // Journal of Photochemistry and Photobiology A: Chemistry. 2022. Vol. 426. P. e113719. doi: 10.1016/j.jphotochem.2021.113719

[27]

Holt D, Okusanya O, Judy R, et al. Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS One. 2014;9(7):e103342. doi: 10.1371/journal.pone.0103342

[28]

Holt D., Okusanya O., Judy R., et al. Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation // PLoS One. 2014. Vol. 9, N 7. P. e103342. doi: 10.1371/journal.pone.0103342

[29]

Newton AD, Kennedy GT, Predina JD. Intraoperative molecular imaging to identify lung adenocarcinomas. Journal of Thoracic Disease. 2016;8(9S):S697–S704. doi: 10.21037/jtd.2016.09.50

[30]

Newton A.D., Kennedy G.T., Predina J.D. Intraoperative molecular imaging to identify lung adenocarcinomas // Journal of Thoracic Disease. 2016. Vol. 8, N 9S. P. S697–S704. doi: 10.21037/jtd.2016.09.50

[31]

Rynda AYu, Olyushin VE, Rostovtsev DM, Zabrodskaya YuM, Papayan GV. Comparative analysis of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery. Pirogov Russian Journal of Surgery. 2022;(1):5–14. doi: 10.17116/hirurgia20220115

[32]

Рында А.Ю., Олюшин В.Е., Ростовцев Д.М., Забродская Ю.М., Папаян Г.В. Сравнительный анализ флуоресцентной навигации в хирургии злокачественных глиом с использованием 5-АЛА и хлорина Е6 // Хирургия. Журнал им. Н.И. Пирогова. 2022. № 1. С. 5–14. doi: 10.17116/hirurgia20220115

[33]

Li CH, Kuo TR, Su HJ, et al. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Scientific Reports. 2015;5:e15675. doi: 10.1038/srep15675

[34]

Li C.H., Kuo T.R., Su H.J., et al. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection // Scientific Reports. 2015. Vol. 5. P. e15675. doi: 10.1038/srep15675

Funding

Министерства науки и высшего образования Российской ФедерацииResearch and publication were supported by the Ministry of Science and Higher Education of the Russian Federation(FWES-2022-0005)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (4671KB)

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/