Three-dimensional cell models for studying tumor–immune interactions and testing immunotherapeutic drugs

Svetlana Yu. Filippova , Sophia V. Timofeeva , Irina V. Mezhevova , Elena V. Shalashnaya , Lyudmila Ya. Rozenko , Aleksandr V. Shaposhnikov , Inna A. Novikova

Russian Journal of Oncology ›› 2023, Vol. 28 ›› Issue (1) : 65 -78.

PDF
Russian Journal of Oncology ›› 2023, Vol. 28 ›› Issue (1) : 65 -78. DOI: 10.17816/onco516562
Reviews
review-article

Three-dimensional cell models for studying tumor–immune interactions and testing immunotherapeutic drugs

Author information +
History +
PDF

Abstract

One of the most promising approaches to cancer treatment is immunotherapy. Suppression of immune checkpoints in tumor tissue (anti-CTLA4, anti-PD1) using monoclonal antibodies has increased the overall survival of patients with some forms of skin melanoma and lung cancer. However, the percentage of patients responding to treatment varies from 20% to 40% depending on the type of cancer and the expression of target molecules by the tumor. The main source of failure of immunotherapy is the tumor microenvironment, which affects both tumor cells and immune cells, causing them to adapt to immunotherapeutic drugs. It is known that the architecture and cellular composition of the microenvironment act on various tumor parameters, promoting the recruitment of immunosuppressive cells into the tumor tissue, as well as the expression of checkpoint inhibitors, such as PD-L1, by tumor cells. Therefore, the complex composition of the tumor microenvironment must be taken into account when searching for new therapies and stratifying patients who may respond to immunotherapy. Therefore, in immunooncological studies, it is necessary to use three-dimensional cellular models that more fully reflect the architecture and cellular composition of the tumor. In this review, we evaluate three-dimensional cell models as tools for research in the field of immuno-oncology, as well as for personalized treatment selection, the search for new targets, and the optimization of existing cancer immunotherapies.

Keywords

three-dimensional cell models / immunotherapy / immune checkpoint inhibitors / tumor microenvironment / immuno-oncology

Cite this article

Download citation ▾
Svetlana Yu. Filippova, Sophia V. Timofeeva, Irina V. Mezhevova, Elena V. Shalashnaya, Lyudmila Ya. Rozenko, Aleksandr V. Shaposhnikov, Inna A. Novikova. Three-dimensional cell models for studying tumor–immune interactions and testing immunotherapeutic drugs. Russian Journal of Oncology, 2023, 28(1): 65-78 DOI:10.17816/onco516562

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Letters. 2015;368(1):7–13. doi: 10.1016/j.canlet.2015.07.039

[2]

Hui L., Chen Y. Tumor microenvironment: sanctuary of the devil // Cancer Letters. 2015. Vol. 368, N 1. P. 7–13. doi: 10.1016/j.canlet.2015.07.039

[3]

Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Advances in experimental medicine and biology. 2020;1224:117–140. doi: 10.1007/978-3-030-35723-8_8

[4]

Dysthe M., Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment // Advances in experimental medicine and biology. 2020. Vol. 1224. P. 117–140. doi: 10.1007/978-3-030-35723-8_8

[5]

Wolf D, Sopper S, Pircher A, Gast G, Wolf AM. Treg(s) in cancer: friends or foe? Journal of cellular physiology. 2015;230(11):2598–2605. doi: 10.1002/jcp.25016

[6]

Wolf D., Sopper S., Pircher A., Gast G., Wolf A.M. Treg(s) in cancer: friends or foe? // Journal of cellular physiology. 2015. Vol. 230, N 11. P. 2598–2605. doi: 10.1002/jcp.25016

[7]

Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in pharmacology. 2017;8:561. doi: 10.3389/fphar.2017.00561

[8]

Alsaab H.O., Sau S., Alzhrani R., et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome // Frontiers in pharmacology. 2017. Vol. 8. P. 561. doi: 10.3389/fphar.2017.00561

[9]

Feng R, Zhao H, Xu J, Shen C. CD47: the next checkpoint target for cancer immunotherapy. Critical reviews in oncology/hematology. 2020;152. doi: 10.1016/j.critrevonc.2020.103014

[10]

Feng R., Zhao H., Xu J., Shen C. CD47: the next checkpoint target for cancer immunotherapy // Critical reviews in oncology/hematology. 2020. Vol. 152. doi: 10.1016/j.critrevonc.2020.103014

[11]

Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nature reviews. Drug discovery. 2019;18:99–115. doi: 10.1038/s41573-018-0004-1

[12]

Chen X., Song E. Turning foes to friends: targeting cancer-associated fibroblasts // Nature reviews. Drug discovery. 2019. Vol. 18. P. 99–115. doi: 10.1038/s41573-018-0004-1

[13]

Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010

[14]

Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy // Immunity. 2014. Vol. 41. P. 49–61. doi: 10.1016/j.immuni.2014.06.010

[15]

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205

[16]

Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation // Nature. 2008. Vol. 454, N 7203. P. 436–444. doi: 10.1038/nature07205

[17]

Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery. 2018;8:1069–1086. doi: 10.1158/2159-8290.CD-18-0367

[18]

Wei S.C., Duffy C.R., Allison J.P. Fundamental mechanisms of immune checkpoint blockade therapy // Cancer Discovery. 2018. Vol. 8. P. 1069–1086. doi: 10.1158/2159-8290.CD-18-0367

[19]

Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer. Frontiers in oncology. 2020;10:584. doi: 10.3389/fonc.2020.00584

[20]

Mercogliano M.F., Bruni S., Elizalde P.V., Schillaci R. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer // Frontiers in oncology. 2020. Vol. 10. P. 584. doi: 10.3389/fonc.2020.00584

[21]

Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50:1007–1023. doi: 10.1016/j.immuni.2019.03.026

[22]

Kang S., Tanaka T., Narazaki M., Kishimoto T. Targeting interleukin-6 signaling in clinic // Immunity. 2019. Vol. 50. P. 1007–1023. doi: 10.1016/j.immuni.2019.03.026

[23]

Wente MN, Keane MP, Burdick MD, et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Letters. 2006;241:221–227. doi: 10.1016/j.canlet.2005.10.041

[24]

Wente M.N., Keane M.P., Burdick M.D., et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis // Cancer Letters. 2006. Vol. 241. P. 221–227. doi: 10.1016/j.canlet.2005.10.041

[25]

Tanabe Y, Sasaki S, Mukaida N, Baba T. Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancer-associated fibroblast accumulation. Oncotarget. 2016;7:48335–48345. doi: 10.18632/oncotarget.10227

[26]

Tanabe Y., Sasaki S., Mukaida N., Baba T. Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancer-associated fibroblast accumulation // Oncotarget. 2016. Vol. 7. P. 48335–48345. doi: 10.18632/oncotarget.10227

[27]

Igarashi Y, Sasada T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy. Journal of immunology research. 2020;2020. doi: 10.1155/2020/5825401

[28]

Igarashi Y., Sasada T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy // Journal of immunology research. 2020. Vol. 2020. doi: 10.1155/2020/5825401

[29]

Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nature reviews. Drug discovery. 2020;19:635–652. doi: 10.1038/s41573-020-0074-8

[30]

Harari A., Graciotti M., Bassani-Sternberg M., Kandalaft L.E. Antitumour dendritic cell vaccination in a priming and boosting approach // Nature reviews. Drug discovery. 2020. Vol. 19. P. 635–652. doi: 10.1038/s41573-020-0074-8

[31]

Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. Journal of translational medicine. 2013;11. doi: 10.1186/1479-5876-11-83

[32]

Jiang J., Wu C., Lu B. Cytokine-induced killer cells promote antitumor immunity // Journal of translational medicine. 2013. Vol. 11. doi: 10.1186/1479-5876-11-83

[33]

Timofeeva SV, Sitkovskaya AO, Novikova IA, et al. Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment. Medical Immunology (Russia)/Meditsinskaya Immunologiya. 2021;23(3):483–496. (In Russ). doi: 10.15789/1563-0625-RAI-2111

[34]

Тимофеева С.В., Ситковская А.О., Новикова И.А., и др. Современные достижения CAT-T иммунотерапии для лечения глиобластомы // Медицинская иммунология. 2021. T. 23, № 3. С. 483–496. doi: 10.15789/1563-0625-RAI-2111

[35]

Timofeeva SV, Filippova SYu, Sitkovskaya AO, et al. 3D Bioprinting of a Breast Tumor Model. Problems in Oncology (Voprosy Onkologii). 2023;69(1):67–73. (In Russ). doi: 10.37469/0507-3758-2023-69-1-67-73

[36]

Тимофеева С.В., Филиппова С.Ю., Ситковская А.О., и др. 3D печать модели опухолевого роста РМЖ // Вопросы онкологии. 2023. Т. 69, № 1. С. 67–73. doi: 10.37469/0507-3758-2023-69-1-67-73

[37]

Teicher BA. In Vivo/Ex vivo and in situ assays used in Cancer Research: a brief review. Toxicologic Pathology. 2009;37(1):114–122. doi: 10.1177/0192623308329473

[38]

Teicher B.A. In Vivo/Ex vivo and in situ assays used in Cancer Research: a brief review // Toxicologic Pathology. 2009. Vol. 37, N 1. P. 114–122. doi: 10.1177/0192623308329473

[39]

Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nature reviews. Clinical oncology. 2023;20(3):192–206. doi: 10.1038/s41571-022-00721-2

[40]

Chuprin J., Buettner H., Seedhom M.O., et al. Humanized mouse models for immuno-oncology research // Nature reviews. Clinical oncology. 2023. Vol. 20, N 3. P. 192–206. doi: 10.1038/s41571-022-00721-2

[41]

Timofeeva SV, Shamova TV, Sitkovskaya AO. 3D Bioprinting of Tumor Microenvironment: Recent Achievements. Biology Bulletin Reviews (Zhurnal obshchei biologii). 2021;82(5):389–400. (In Russ). doi: 10.31857/S0044459621050067

[42]

Тимофеева С.В., Шамова Т.В., Ситковская А.О. 3D-био-принтинг микроокружения опухоли: последние достижения // Журнал общей биологии. 2021. Т. 82, № 5. С. 389–400. doi: 10.31857/S0044459621050067

[43]

Filippova SYu, Sitkovskaya AO, Timofeeva SV, et al. Application of silicone coating to optimize the process of obtaining cellular spheroids by the hanging drop method. South Russian Journal of Cancer. 2022;3(3):15–23. (In Russ). doi: 10.37748/2686-9039-2022-3-3-2

[44]

Филиппова С.Ю., Ситковская А.О., Тимофеева С.В., и др. Применение силиконового покрытия для оптимизации процесса получения клеточных сфероидов методом висячей капли // Южно-Российский онкологический журнал. 2022. Т. 3, № 3. С. 15–23. doi: 10.37748/2686-9039-2022-3-3-2

[45]

Filippova SYu, Chembarova TV, Timofeeva SV, et al. Cultivation of cells in alginate drops as a high-performance method of obtaining cell spheroids for bioprinting. South Russian Journal of Cancer. 2023;4(2):47–55. (In Russ). doi: 10.37748/2686-9039-2023-4-2-5

[46]

Филиппова С.Ю., Чембарова Т.В., Тимофеева С.В., и др. Культивирование клеток в альгинатных каплях, как высокопроизводительный метод получения клеточных сфероидов для биопечати // Южно-Российский онкологический журнал. 2023. Т. 4, № 2. С. 47–55. doi: 10.37748/2686-9039-2023-4-2-5

[47]

Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. doi: 10.1016/j.neo.2014.12.004

[48]

Weiswald L.B., Bellet D., Dangles-Marie V. Spherical cancer models in tumor biology // Neoplasia. 2015. Vol. 17. P. 1–15. doi: 10.1016/j.neo.2014.12.004

[49]

Jiang X, Seo YD, Chang JH, et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 2017;6:e1333210. doi: 10.1080/2162402X.2017.1333210

[50]

Jiang X., Seo Y.D., Chang J.H., et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment // Oncoimmunology. 2017. Vol. 6: e1333210. doi: 10.1080/2162402X.2017.1333210

[51]

Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–1988. doi: 10.1016/j.cell.2018.11.021

[52]

Neal J.T., Li X., Zhu J., et al. Organoid modeling of the tumor immune microenvironment // Cell. 2018. Vol. 175. P. 1972–1988. doi: 10.1016/j.cell.2018.11.021

[53]

Courau T, Bonnereau J, Chicoteau J, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. Journal for Immunotherapy of Cancer. 2019;7(1):74. doi: 10.1186/s40425-019-0553-9

[54]

Courau T., Bonnereau J., Chicoteau J., et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment // Journal for Immunotherapy of Cancer. 2019. Vol. 7, N 1. P. 74. doi: 10.1186/s40425-019-0553-9

[55]

Tsai S, McOlash L, Palen K, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18(1):335. doi: 10.1186/s12885-018-4238-4

[56]

Tsai S., McOlash L., Palen K., et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models // BMC Cancer. 2018. Vol. 18, N 1. P. 335. doi: 10.1186/s12885-018-4238-4

[57]

Yu L, Li Z, Mei H, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clinical & translational immunology. 2021;10(2). doi: 10.1002/cti2.1248

[58]

Yu L., Li Z., Mei H., et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro // Clinical & translational immunology. 2021. Vol. 10, N 2. doi: 10.1002/cti2.1248

[59]

Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of Tumor-Reactive T cells by co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell. 2018;174(6):1586–1598. doi: 10.1016/j.cell.2018.07.009

[60]

Dijkstra K.K., Cattaneo C.M., Weeber F., et al. Generation of Tumor-Reactive T cells by co-culture of Peripheral Blood Lymphocytes and Tumor Organoids // Cell. 2018. Vol. 174, N 6. P. 1586–1598. doi: 10.1016/j.cell.2018.07.009

[61]

Meng Q, Xie S, Gray GK, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. Journal for immunotherapy of cancer. 2021;9(11). doi: 10.1136/jitc-2021-003213

[62]

Meng Q., Xie S., Gray G.K., et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids // Journal for immunotherapy of cancer. 2021. Vol. 9, N 11. doi: 10.1136/jitc-2021-003213

[63]

Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. Lab on a Chip. 2010;10(8):939. doi: 10.1039/b921695b

[64]

Wu M.H., Huang S.B., Lee G.B. Microfluidic cell culture systems for drug research // Lab on a Chip. 2010. Vol. 10, N 8. P. 939. doi: 10.1039/b921695b

[65]

Xie H, Appelt JW, Jenkins RW. Going with the flow: modeling the tumor microenvironment using microfluidic technology. Cancers. 2021;13(23):6052. doi: 10.3390/cancers13236052

[66]

Xie H., Appelt J.W., Jenkins R.W. Going with the flow: modeling the tumor microenvironment using microfluidic technology // Cancers (Basel). 2021. Vol. 13, N 23. P. 6052. doi: 10.3390/cancers13236052

[67]

Liu H, Wang Y, Wang H, et al. A Droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Advanced science. 2020;7(11):1903739. doi: 10.1002/advs.201903739

[68]

Liu H., Wang Y., Wang H., et al. A Droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering // Advanced science. 2020. Vol. 7, N 11. P. 1903739. doi: 10.1002/advs.201903739

[69]

Nguyen M, De Ninno A, Mencattini A, et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell reports. 2018;25:3884–3893. doi: 10.1016/j.celrep.2018.12.015

[70]

Nguyen M., De Ninno A., Mencattini A., et al. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments // Cell reports. 2018. Vol. 25:3884–3893. doi: 10.1016/j.celrep.2018.12.015

[71]

Aref AR, Campisi M, Ivanova E, et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on a Chip. 2018;18:3129–3143. doi: 10.1039/C8LC00322J

[72]

Aref A.R., Campisi M., Ivanova E., et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade // Lab on a Chip. 2018. Vol. 18. P. 3129–3143. doi: 10.1039/C8LC00322J

[73]

Jenkins RW, Aref AR, Lizotte PH, et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer discovery. 2018;8(2):196–215. doi: 10.1158/2159-8290.CD-17-0833

[74]

Jenkins R.W., Aref A.R., Lizotte P.H., et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids // Cancer discovery. 2018. Vol. 8, N 2. P. 196–215. doi: 10.1158/2159-8290.CD-17-0833

[75]

Moore N, Doty D, Zielstorff M, et al. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions. Lab on a Chip. 2018;18:1844–1858. doi: 10.1039/C8LC00256H

[76]

Moore N., Doty D., Zielstorff M., et al. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions // Lab on a Chip. 2018. Vol. 18. P. 1844–1858. doi: 10.1039/C8LC00256H

[77]

Zervantonakis IK, Hughes-Alford SK, Charest JL, et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences of the USA. 2012;109:13515–13520. doi: 10.1073/pnas.1210182109

[78]

Zervantonakis I.K., Hughes-Alford S.K., Charest J.L., et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function // Proceedings of the National Academy of Sciences of the USA. 2012. Vol. 109. P. 13515–13520. doi: 10.1073/pnas.1210182109

[79]

Agliari E, Biselli E, De Ninno A, et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports. 2014;4:6639. doi: 10.1038/srep06639

[80]

Agliari E., Biselli E., De Ninno A., et al. Cancer-driven dynamics of immune cells in a microfluidic environment // Scientific Reports. 2014. Vol. 4. P. 6639. doi: 10.1038/srep06639

[81]

Biselli E, Agliari E, Barra A, et al. Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Scientific Reports. 2017;7:12737. doi: 10.1038/s41598-017-13070-3

[82]

Biselli E., Agliari E., Barra A., et al. Organs on chip approach: a tool to evaluate cancer -immune cells interactions // Scientific Reports. 2017. Vol. 7. P. 12737. doi: 10.1038/s41598-017-13070-3

[83]

Kitajima S, Ivanova E, Guo S, et al. Suppression of STING associated with Lkb1 loss in KRAS-driven lung cancer. Cancer Discovery. 2019;9:34–45. doi: 10.1158/2159-8290.CD-18-0689

[84]

Kitajima S., Ivanova E., Guo S., et al. Suppression of STING associated with Lkb1 loss in KRAS-driven lung cancer // Cancer Discovery. 2019. Vol. 9. P. 34–45. doi: 10.1158/2159-8290.CD-18-0689

[85]

Businaro L, De Ninno A, Schiavoni G, et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab on a Chip. 2013;13:229–239. doi: 10.1039/c2lc40887b

[86]

Businaro L., De Ninno A., Schiavoni G., et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment // Lab on a Chip. 2013. Vol. 13. P. 229–239. doi: 10.1039/c2lc40887b

[87]

Gong Z, Huang L, Tang X, et al. Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week. Advanced healthcare materials. 2021;10(22):2101312. doi: 10.1002/adhm.202101312

[88]

Gong Z., Huang L., Tang X., et al. Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week // Advanced healthcare materials. 2021. Vol. 10, N 22. P. 2101312. doi: 10.1002/adhm.202101312

[89]

Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac6d11

[90]

Shukla P., Yeleswarapu S., Heinrich M.A., Prakash J., Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling // Biofabrication. 2022. Vol. 14, N 3. doi: 10.1088/1758-5090/ac6d11

[91]

Timofeeva SV, Filippova SYu, Sitkovskaya AO, et al. Bioresource collection of cell lines and primary tumors of the National Medical Research Center of Oncology of the Ministry of Health of Russia. Cardiovascular Therapy and Prevention. 2022;21(11):44–50. (In Russ). doi: 10.15829/1728-8800-2022-3397

[92]

Тимофеева С.В., Филиппова С.Ю., Ситковская А.О., и др. Биоресурсная коллекция клеточных линий и первичных опухолей ФГБУ НМИЦ онкологии Минздрава России // Кардиоваскулярная терапия и профилактика. 2022. Т. 21, № 11. С. 44–50. doi: 10.15829/1728-8800-2022-3397

[93]

Kit OI, Timofeeva SV, Sitkovskaya AO, Novikova IA, Kolesnikov EN. The biobank of the National Medical Research Centre for Oncology as a resource for research in the field of personalized medicine: A review. Journal of Modern Oncology. 2022;24(1):6–11. (In Russ). doi: 10.26442/18151434.2022.1.201384

[94]

Кит О.И., Тимофеева С.В., Ситковская А.О., Новикова И.А., Колесников Е.Н. ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины // Современная Онкология. 2022. Т. 24, № 1. С. 6–11. doi: 10.26442/18151434.2022.1.201384

[95]

Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Advances in biological regulation. 2020;75(100658). doi: 10.1016/j.jbior.2019.100658

[96]

Hermida M.A., Kumar J.D., Schwarz D., et al. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models // Advances in biological regulation. 2020. Vol. 75, N 100658. doi: 10.1016/j.jbior.2019.100658

[97]

Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell research. 2020;30(10):833–853. doi: 10.1038/s41422-020-0338-1

[98]

Tang M., Xie Q., Gimple R.C., et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions // Cell research. 2020. Vol. 30, N 10. P. 833–853. doi: 10.1038/s41422-020-0338-1

[99]

Neufeld L, Yeini E, Reisman N, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Science advances. 2021;7(34). doi: 10.1126/sciadv.abi9119

[100]

Neufeld L., Yeini E., Reisman N., et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment // Science advances. 2021. Vol. 7, N 34. doi: 10.1126/sciadv.abi9119

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/