Optimization of algorithms for in vivo preclinical screening of compounds with an alleged antitumor effect
Margarita A. Dodokhova , Olga V. Voronova , Margarita S. Alkhusein-Kulyaginova , Marina V. Gulyan , Elizaveta M. Kotieva , Svetlana Yu. Korobka , Violetta M. Kotieva , Kristina K. Karapetyan , Nadezhda D. Vlasova , Dmitry B. Shpakovsky , Elena R. Milaeva , Inga M. Kotieva
Russian Journal of Oncology ›› 2023, Vol. 28 ›› Issue (2) : 119 -135.
Optimization of algorithms for in vivo preclinical screening of compounds with an alleged antitumor effect
BACKGROUND: Despite a large number of publications on preclinical studies of compounds with a suspected antitumor effect on in silico and in vitro models, in vivo studies are the most informative. The experimental part of the work on laboratory animals has its own peculiarities in the field of preclinical research: a large number of animals and analog compounds in the series, two- and three-phase staging, and, consequently, high cost and labor-intensive execution.
AIM: Optimization of algorithms for screening preclinical in vivo studies of compounds with a suspected antitumor effect.
MATERIALS AND METHODS: To form the algorithm in the preclinical study, primary data was obtained using standard pharmacological (determination of the toxicity class index, antitumor and antimetastatic activity, inhibition of tumor growth by weight, average life expectancy of animals) and morphological (autopsy, micropreparations with hematoxylin and eosin staining, as well as immunohistochemical study using monoclonal antibodies) methods with the selection of leading compounds for in-depth study with a description of the mechanism of pharmacological activity.
RESULTS: Based on a series of comparative experiments, the following algorithm of preclinical in vivo study for newly synthesized compounds with an alleged antitumor effect has been tested.
Stage 1. Determination of the toxicity class with a single intragastric administration to Wistar rats according to the Organization for Economic Co-operation and Development 420 protocol and selection of candidates for antitumor drugs according to the principle of the greatest safety of use.
Stage 2. Determination of the presence/absence of pharmacological activity of the tested compounds. Compounds of toxicity classes IV and V (according to the Globally Harmonized System of Hazard Classification and Labeling of Chemical Products) in a wide range of doses (doses are selected depending on the toxicity class) are examined for pharmacological activity before the natural death of tumor-bearing animals with the identification of leader substances, in-depth study of which is appropriate. The selection of promising substances and total doses for administration at the next stage is determined by the life expectancy of tumor-bearing animals.
Stage 3. Determination of indicators of antitumor and antimetastatic activity of leader substances with a fixed euthanasia period for all tumor-bearing animals and determination of possible mechanisms for the implementation of the therapeutic effect using immunohistochemical analysis.
Stage 4. To study the effect of the tested compounds on the growth rates of the primary tumor node and metastatic foci at different stages of the development of the tumor process, when administered in different modes, as part of combined and monochemotherapy, with mandatory clarification of the mechanisms for the implementation of antitumor and antimetastatic activity using biochemical and immunohistochemical techniques.
Stage 5. The study of the most promising compounds according to the guidelines for preclinical safety studies for the purpose of clinical trials and registration of medicines (the document was approved by the decision of the Board of the Eurasian Economic Commission of November 26, 2019, N 202): «Toxicity studies with repeated (multiple) administration of the drug, preclinical studies conducted in order to justify the conduct of exploratory clinical studies, studies of local tolerability of the drug, studies of genotoxicity of the drug, carcinogenicity of the drug, etc.»
CONCLUSIONS: The step-by-step exclusion of the tested compounds from the line of similarly-structured substances described by us will increase the efficiency of selecting promising candidates for antitumor drugs and reduce the cost of conducting preclinical studies of compounds with an alleged antitumor effect.
preclinical studies / in vivo / organoelement compounds with a suspected antitumor effect / morphological methods / toxicity class / organotin compounds / immunohistochemistry
| [1] |
Upadhyay N, Tilekar K, Loiodice F, et al. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorganic Chemistry. 2021;107:104527. doi: 10.1016/j.bioorg.2020.104527 |
| [2] |
Upadhyay N., Tilekar K., Loiodice F., et al. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy // Bioorganic Chemistry. 2021. Vol. 107. P. 104527. doi: 10.1016/j.bioorg.2020.104527 |
| [3] |
Avxentyev NA, SisiginaNN, Frolov MYu, Makarov AS. Analysis of novel antineoplastic drugs treatment impact on the federal project «cancer control» goals achievement. Problems in oncology. 2021;67(6):768–776. (In Russ). doi: 10.37469/0507-3758-2021-67-6-768-776 |
| [4] |
Авксентьев Н.А., Сисигина Н.Н., Фролов М.Ю., Макаров А.С. Оценка вклада применения современных противоопухолевых лекарственных препаратов в достижении целей федерального проекта по борьбе с онкозаболеваниями // Вопросы онкологии. 2021. Т. 67, № 6. С. 768–776. doi: 10.37469/0507-3758-2021-67-6-768-776 |
| [5] |
Abakumov GA, Piskunov AV, Cherkasov VK, et al. Organoelement chemistry: promising growth areas and challenges. Russian Chemical Reviews. 2018;87(5):393–507. (In Russ). doi: 10.1070/RCR4795 |
| [6] |
Абакумов Г.А., Пискунов А.В., Черкасов В.К., и др. Перспективные точки роста и вызовы элементоорганической химии // Успехи химии. 2018. Т. 87, № 5. С. 393–507. doi: 10.1070/RCR4795 |
| [7] |
Bührmann M, Kallepu S, Warmuth JD, et al. Fragtory: Pharmacophore-Focused Design, Synthesis, and Evaluation of an sp3-Enriched Fragment Library. Journal of Medicinal Chemistry. 2023;66(9):6297–6314. doi: 10.1021/acs.jmedchem.3c00187 |
| [8] |
Bührmann M., Kallepu S., Warmuth J.D., et al. Fragtory: Pharmacophore-Focused Design, Synthesis, and Evaluation of an sp3-Enriched Fragment Library // Journal of Medicinal Chemistry. 2023. Vol. 66, N 9. P. 6297–6314. doi: 10.1021/acs.jmedchem.3c00187 |
| [9] |
Vasiliev AN, Niyazov RR, Gavrishina EV, Dranytsina MA, Kulichev DA. Problems of planning and conduct of preclinical trials in the Russian Federation. Remedium. Journal about the Russian market of medicines and medical equipment. 2017;(9):6–19. (In Russ). doi: 10.21518/1561-5936-2017-9-6-18 |
| [10] |
Васильев А.Н., Ниязов Р.Р., Гавришина Е.В., Драницына М.А., Куличев Д.А. Проблемы планирования и проведения доклинических исследований в Российской Федерации // Ремедиум. 2017. № 9. С. 6–19. doi: 10.21518/1561-5936-2017-9-6-18 |
| [11] |
Nehra B, Mathew B, Chawla PA. A Medicinal Chemist’s Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents. Current Topics in Medicinal Chemistry. 2022;22(6):493–528. doi: 10.2174/1568026622666220111142617 |
| [12] |
Nehra B., Mathew B., Chawla P.A. A Medicinal Chemist’s Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents // Current Topics in Medicinal Chemistry. 2022. Vol. 22, N 6. P. 493–528. doi: 10.2174/1568026622666220111142617 |
| [13] |
Semin AA. The question of strengthening the research capacities in drug innovation. Remedium. Journal about the Russian market of medicines and medical equipment. 2018;(3):6–15. (In Russ). doi: 10.21518/1561-5936-2018-3-6-15 |
| [14] |
Семин А.А. К вопросу о повышении продуктивности научных исследований в области разработки инновационных лекарственных средств // Ремедиум. 2018. № 3. С. 6–15. doi: 10.21518/1561-5936-2018-3-6-15 |
| [15] |
Melezhnikova NO, Domnina AP, Goryachaya TS, Petrosyan MA. Kletochnye tekhnologii v farmakologicheskikh issledovaniyakh. nastoyashchee i budushchee. Tsitologiya. 2018;60(9):673–678. (In Russ). doi: 10.7868/s0041377118090023 |
| [16] |
Мележникова Н.О., Домнина А.П., Горячая Т.С., Петросян М.А. Клеточные технологии в фармакологических исследованиях. Настоящее и будущее // Цитология. 2018. Т. 60, № 9. С. 673–678. doi: 10.7868/s0041377118090023 |
| [17] |
Bezborodova OA, Pankratov AA, Nemtsova ER, et al. Anti-Tumour Drugs: Planning Preclinical Efficacy and Safety Studies. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(2):96–110. (In Russ). doi: 10.30895/1991-2919-2020-10-2-96-110 |
| [18] |
Безбородова О.А., Панкратов А.А., Немцова Е.Р., и др. Противоопухолевые лекарственные препараты: планирование доклинических исследований по оценке эффективности и безопасности // Ведомости Научного центра экспертизы средств медицинского применения. 2020. Т. 10, № 2. С. 96–110. doi: 10.30895/1991-2919-2020-10-2-96-110 |
| [19] |
Shpakovsky DB, Banti CN, Mukhatova EM, et al. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol. Dalton Trans. 2014;43(18):6880–6890. doi: 10.1039/c3dt53469c |
| [20] |
Shpakovsky D.B., Banti C.N., Mukhatova E.M., et al. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol // Dalton Trans. 2014. Vol. 43, N 18. P. 6880–6890. doi: 10.1039/c3dt53469c |
| [21] |
Nikitin EA, Shpakovsky DB, Tyurin VYu, et al. Novel organotin complexes with phenol and imidazole moieties for optimized antitumor properties. Journal of Organometallic Chemistry. 2022;959:122212. doi: 10.1016/j.jorganchem.2021.122212 |
| [22] |
Nikitin E.A., Shpakovsky D.B., Tyurin V.Yu., et al. Novel organotin complexes with phenol and imidazole moieties for optimized antitumor properties // Journal of Organometallic Chemistry. 2022. Vol. 959. P. 122212. doi: 10.1016/j.jorganchem.2021.122212 |
| [23] |
OECD (2002), Test No. 420: Acute Oral Toxicity — Fixed Dose Procedure. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. doi: 10.1787/9789264070943-en |
| [24] |
Avdeeva OI, Makarova MN, Kalatanova AV, Kovaleva MA. Bioethical And Economic Aspects In The Basis Of A Choice Of A Method Of Studying Of Toxicity Of Medical Products At Single Introduction. Laboratornye Zhivotnye dlya nauchnych issledovanii (Laboratory Animals for Science). 2018;(1):4–11. (In Russ). doi: 10.29296/2618723X-2018-01-01 |
| [25] |
Авдеева О.И., Макарова М.Н., Калатанова А.В., Ковалева М.А. Биоэтические и экономические аспекты в основе выбора метода изучения токсичности лекарственных средств при однократном введении // Лабораторные животные для научных исследований. 2018. № 1. С. 4–11. doi: 10.29296/2618723X-2018-01-01 |
| [26] |
Kotieva IM, Frantsiyants EM, Kaplieva IV, et al. Influence of chronic pain on some metabolic processes in the skin of female mice. Russian Journal of Pain. 2018;4(58):46–54. doi: 10.25731/RASP.2018.04.027 |
| [27] |
Котиева И.М., Франциянц Е.М., Каплиева И.В., и др. Влияние хронической боли на некоторые метаболические процессы в коже самок мышей // Российский журнал боли. 2018. Т. 4, № 58. С. 46–54. doi: 10.25731/RASP.2018.04.027 |
| [28] |
Karkishchenko NN, Grachev SV, editors. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomeditsinskikh tekhnologiyakh. Moscow: Profil’; 2010. (In Russ). |
| [29] |
Руководство по лабораторным животным и альтернативным моделям в биомедицинских технологиях / под ред. Н.Н. Каркищенко, С.В. Грачева. Москва : Профиль, 2010. |
| [30] |
Khabriev RU, editor. Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. 2nd edition. Moscow: Meditsina; 2005. (In Russ). |
| [31] |
Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. 2-е издание / под. ред. Р.У. Хабриева. Москва : Медицина, 2005. |
| [32] |
Ma W, Qin Y, Chapuy B, Lu Ch. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One. 2019;14(10):e0213482. doi: 10.1371/journal.pone.0213482 |
| [33] |
Ma W., Qin Y., Chapuy B., Lu Ch. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells // PLoS One. 2019. Vol. 14, N 10. P. e0213482. doi: 10.1371/journal.pone.0213482 |
| [34] |
Wang J, Xiang H, Lu Y, Wu T. Role and clinical significance of TGF β1 and TGF βR1 in malignant tumors (Review). International Journal of Molecular Medicine. 2021;47(4). doi: 10.3892/ijmm.2021.4888 |
| [35] |
Wang J., Xiang H., Lu Y., Wu T. Role and clinical significance of TGF β1 and TGF βR1 in malignant tumors (Review). International Journal of Molecular Medicine. 2021. Vol. 47, N 4. doi: 10.3892/ijmm.2021.4888 |
| [36] |
de Stree G, Lucas S. Targeting immunosuppression by TGF-β1 for cancer immunotherapy. Biochemical Pharmacology. 2021;192:114697. doi: 10.1016/j.bcp.2021.114697 |
| [37] |
de Stree G., Lucas S. Targeting immunosuppression by TGF-β1 for cancer immunotherapy // Biochemical Pharmacology. 2021. Vol. 192. P. 114697. doi: 10.1016/j.bcp.2021.114697 |
| [38] |
Sato R, Imamura K, Semba T, et al. TGFβ Signaling Activated by Cancer-Associated Fibroblasts Determines the Histological Signature of Lung Adenocarcinoma. Cancer Research. 2021;81(18):4751–4765. doi: 10.1158/0008-5472.can-20-3941 |
| [39] |
Sato R., Imamura K., Semba T., et al. TGFβ Signaling Activated by Cancer-Associated Fibroblasts Determines the Histological Signature of Lung Adenocarcinoma // Cancer Research. 2021. Vol. 81, N 18. P. 4751–4765. doi: 10.1158/0008-5472.can-20-3941 |
| [40] |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Romanian journal of morphology and embryology. 2018;59(2):455–467. |
| [41] |
Melincovici C.S., Boşca A.B., Şuşman S., et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis // Romanian journal of morphology and embryology. 2018. Vol. 59, N 2. P. 455–467. |
| [42] |
Daneluzzi C, Seyed Jafari SM, Hunger R, Bossart S. The Immunohistochemical Assessment of Neoangiogenesis Factors in Squamous Cell Carcinomas and Their Precursors in the Skin. Journal of Clinical Medicine. 2022;11(15):4494. doi: 10.3390/jcm11154494 |
| [43] |
Daneluzzi C., Seyed Jafari S.M., Hunger R., Bossart S. The Immunohistochemical Assessment of Neoangiogenesis Factors in Squamous Cell Carcinomas and Their Precursors in the Skin // Journal of Clinical Medicine. 2022. Vol. 11, N 15. P. 4494. doi: 10.3390/jcm11154494 |
| [44] |
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. Journal of Experimental & Clinical Cancer Research. 2020;39(1). doi: 10.1186/s13046-020-01709-5 |
| [45] |
Jiang X., Wang J., Deng X., et al. The role of microenvironment in tumor angiogenesis // Journal of Experimental & Clinical Cancer Research. 2020. Vol. 39, N 1. doi: 10.1186/s13046-020-01709-5 |
| [46] |
Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death & Differentiation. 2018;25(1):27–36. doi: 10.1038/cdd.2017.161 |
| [47] |
Adams J.M., Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets // Cell Death & Differentiation. 2018. Vol. 25, N 1. P. 27–36. doi: 10.1038/cdd.2017.161 |
| [48] |
Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. International Journal of Molecular Sciences. 2022;23(7):3691. doi: 10.3390/ijms23073691 |
| [49] |
Suraweera C.D., Banjara S., Hinds M.G., Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family // International Journal of Molecular Sciences. 2022. Vol. 23, N 7. P. 3691. doi: 10.3390/ijms23073691 |
| [50] |
Krishna S, Kumar SB, Krishna Murthy TP, Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Computers in Biology and Medicine. 2021;134:104455. doi: 10.1016/j.compbiomed.2021.104455 |
| [51] |
Krishna S., Kumar S.B., Krishna Murthy T.P., Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy // Computers in Biology and Medicine. 2021. Vol. 134. P. 104455. doi: 10.1016/j.compbiomed.2021.104455 |
| [52] |
Vincek E, Rudnick E. Melanocytic marker Melan-A detects molluscum contagiosum bodies. Journal of Histotechnology. 2022;45(1):36–38. doi: 10.1080/01478885.2021.1964872 |
| [53] |
Vincek E., Rudnick E. Melanocytic marker Melan-A detects molluscum contagiosum bodies // Journal of Histotechnology. 2022. Vol. 45, N 1. P. 36–38. doi: 10.1080/01478885.2021.1964872 |
| [54] |
Ronchi A, Zito Marino F, Toni G, et al. Diagnostic performance of melanocytic markers for immunocytochemical evaluation of lymph-node melanoma metastases on cytological samples. Journal of Clinical Pathology. 2022;75(1):45–49. doi: 10.1136/jclinpath-2020-206962 |
| [55] |
Ronchi A., Zito Marino F., Toni G., et al. Diagnostic performance of melanocytic markers for immunocytochemical evaluation of lymph-node melanoma metastases on cytological samples // Journal of Clinical Pathology. 2022. Vol. 75, N 1. P. 45–49. doi: 10.1136/jclinpath-2020-206962 |
| [56] |
Shamanova AYu, Kazachkov EL, Panova IE, Rostovtsev DM Prediktivnye aspekty prizhiznennogo patologoanatomicheskogo issledovaniya uveal’nykh melanom. Voprosy Onkologii. 2022;68(3 suppl.):132–133. (In Russ). |
| [57] |
Шаманова А.Ю., Казачков Е.Л., Панова И.Е., Ростовцев Д.М. Предиктивные аспекты прижизненного патологоанатомического исследования увеальных меланом // Вопросы онкологии. 2022. Т. 68, № 3 (приложение). С. 132–133. |
| [58] |
Gushchina SV, Makarova MN, Pozharitskaya ON. Sravnitel’noe toksikologicheskoe izuchenie nositelei dlya lekarstvennykh sredstv, primenyaemykh v doklinicheskikh issledovaniyakh. International bulletin of Veterinary Medicine. 2015;(3):92–98. (In Russ). |
| [59] |
Гущина С.В., Макарова М.Н., Пожарицкая О.Н. Сравнительное токсикологическое изучение носителей для лекарственных средств, применяемых в доклинических исследованиях // Международный вестник ветеринарии. 2015. № 3. С. 92–98. |
| [60] |
Kazancheva OD, Gerasimenko AS. Search methodology of the new biologically active pharmaceutical substances with receptor activity. International Journal of Applied and Fundamental Research. 2016;(8 Pt 4):522–525. (In Russ). |
| [61] |
Казанчева О.Д., Герасименко А.С. Методология поиска новых биологически активных фармакологических веществ с рецепторной активностью // Международный журнал прикладных и фундаментальных исследований. 2016. № 8 часть 4. С. 522–525. |
| [62] |
Kirichenko DV. The effect of physic-chemical properties of the components of dosage forms on the selection of vehicle for the administration to laboratory animals. Laboratornye Zhivotnye dlya nauchnych issledovanii (Laboratory Animals for Science). 2020;(2):76–81. (In Russ). doi: 10.29296/2618723X-2020-02-09 |
| [63] |
Кириченко Д.В. Влияние физико-химических свойств компонентов препарата на выбор носителя для введения лабораторным животным // Лабораторные животные для научных исследований. 2020. № 2. С. 76–81. doi: 10.29296/2618723X-2020-02-09 |
| [64] |
Koptyaeva KE, Muzhikyan AA, Guschin YaA, et al. Technique Of Dissection And Extracting Organs Of Laboratory Animals. Message 1 (Rats). Laboratornye Zhivotnye dlya nauchnych issledovanii (Laboratory Animals for Science). 2018;1(2):71–92. (In Russ). doi: 10.29296/2618723X-2018-02-08 |
| [65] |
Коптяева К.Е., Мужикян А.А., Гущин Я.А., и др. Методика вскрытия и извлечения органов лабораторных животных (крысы) // Лабораторные животные для научных исследований. 2018. Т. 1, № 2. С. 71–92. doi: 10.29296/2618723X-2018-02-08 |
| [66] |
Koptyaeva KE, Muzhikyan AA, Guschin YaA, et al. Technique Of Dissection And Extracting Organs Of Laboratory Animals. Message 2: Mouse. Laboratornye Zhivotnye dlya nauchnych issledovanii (Laboratory Animals for Science). 2018;1(4):50–73. (In Russ). doi: 10.29296/2618723X-2018-04-05 |
| [67] |
Коптяева К.Е., Мужикян А.А., Гущин Я.А., и др. Методика вскрытия и извлечения органов лабораторных животных. Сообщение 2: мышь // Лабораторные животные для научных исследований. 2018. Т. 1, № 4. С. 50–73. doi: 10.29296/2618723X-2018-04-05 |
| [68] |
Treshchalina EM, Zhukova OS, Gerasimova GK, Andronova NV, Garin AM. Metodicheskie rekomendatsii po doklinicheskomu izucheniyu protivoopukholevoi aktivnosti lekarstvennykh sredstv. In: Nauchnyi tsentr ekspertizy sredstv meditsinskogo primeneniya Minzdravsotsrazvitiya Rossii. Chast’ 1. Moscow: Grif i K; 2012. P. 642–657. (In Russ). |
| [69] |
Трещалина Е.М., Жукова О.С., Герасимова Г.К., Андронова Н.В., Гарин А.М. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Москва : Гриф и К, 2012. С. 642–657. |
| [70] |
Kiseleva MP, Pokrovsky VS, Borisova LM, Golubeva IS, Ektova LV. N-glycosidesindolo[2,3,-a]pyrrolo[3,4,-c]carbazole derivatives chemical structure influence on antitumor activity. Russian Journal of Biotherapy. 2019;18(2):32–39. (In Russ). doi: 10.17650/1726-9784-2019-18-2-32-39 |
| [71] |
Киселева М.П., Покровский В.С., Борисова Л.М., Голубева И.С., Эктова Л.В. Влияние химической структуры производных n-гликозидов индоло[2,3-а]пирроло[3,4-c]карбазолов на противоопухолевую активность // Российский биотерапевтический журнал. 2019. Т. 18, № 2. С. 32–39. doi: 10.17650/1726-9784-2019-18-2-32-39 |
| [72] |
Abo Qoura L, Morozova EA, Koval VS, et al. Cytotoxic and antitumor properties of methionine γ-lyase conjugate in combination with S-alk(en)yl–L-cysteine sulfoxides. Russian Journal of Biotherapy. 2022;21(4):62–70. (In Russ). doi: 10.17650/1726-9784-2022-21-4-62-70 |
| [73] |
Або Кура Л., Морозова Е.А., Коваль В.С., и др. Цитотоксические и противоопухолевые свойства конъюгата метионин γ-лиаза-дайдзеин в комбинации с сульфоксидами s-алк(ен)ил-l-цистеина // Российский биотерапевтический журнал. 2022. Т. 21, № 4. С. 62–70. doi: 10.17650/1726-9784-2022-21-4-62-70 |
| [74] |
Sof’ina ZP, Syrkin AB, Goldin AA, et al. Experimental evaluation of antitumor drugs in the USA and USSR and clinical correlations. Moscow: Meditsina; 1980. (In Russ). |
| [75] |
Софьина З.П., Сыркин А.Б., Голдин А.А., и др. Экспериментальная оценка противоопухолевых препаратов в СССР и США. Москва : Медицина, 1980. |
| [76] |
Kit OI, Kotieva IM, Frantsiyants EM, et al. Neurotransmitter systems of female mouse brain during growth of malignant melanoma modeled on the background of chronic pain. Pathogenesis. 2017;15(4):49–55. doi: 10.25557/GM.2018.4.9749 |
| [77] |
Кит О.И., Котиева И.М., Франциянц Е.М., и др. Нейромедиаторные системы головного мозга самок мышей в динамике роста злокачественной меланомы, воспроизведенной на фоне хронической боли // Патогенез. 2017. Т. 15, № 4. С. 49–55. doi: 10.25557/GM.2018.4.9749 |
| [78] |
Kit OI, Kotieva IM, Frantsiyants EM, et al. Angiogenesis growth factors in the intact and pathologically changed skin of female mice with malignant melanoma, which develops on the background of chronic pain. Russian Journal of Pain. 2017;3-4(54):17–25. (In Russ). |
| [79] |
Кит О.И., Котиева И.М., Франциянц Е.М., и др. Регуляция ангиогенеза факторами роста в интактной и патологически измененной коже самок мышей при злокачественной меланоме, развивающейся на фоне хронической боли // Российский журнал боли. 2017. Т. 3-4, № 54. С. 17–25. |
Eco-Vector
/
| 〈 |
|
〉 |