Antiproliferative activity of the novel CYP17A1 inhibitor alsevirone
Irina I. Khan , Alexandra S. Latysheva , Vladimir A. Zolottsev , Elena A. Demidova , Tatyana S. Spirina , Saida S. Karshieva , Darina V. Sokolova , Marina N. Yakunina , Marina V. Komarova , Alexander Yu. Misharin , Vadim S. Pokrovsky
Russian Journal of Oncology ›› 2023, Vol. 28 ›› Issue (1) : 53 -64.
Antiproliferative activity of the novel CYP17A1 inhibitor alsevirone
BACKGROUND: Prostate cancer is the most frequently diagnosed type of cancer in men in developed countries. It is dependent upon androgens and could be effectively combated by androgen deprivation therapy. Reduction of androgen synthesis can be accomplished through the inhibition of the enzyme 17α-hydroxylase/17.20-lyase (CYP17A1), which catalyzes two sequential reactions in the production of androgens. Steroid derivatives modified with nitrogen-containing heterocycles attract attention as antineoplastic agents for prostate cancer treatment due to their inhibitory potential against CYP17A1.
AIM: Evaluate cytotoxic activity and antitumor effects of the synthesized alsevirone in comparison with abiraterone.
METHODS: Cytotoxicity was evaluated using MTT test. Anticancer effect was researched in vivo in prostate cancer xenograft models 22Rv1 and DU145 in Balb/c nude mice. Testosterone concentration was determined using an enzyme-linked immunosorbent assay in blood serum of BDF1 mice.
RESULTS: Alsevirone demonstrated cytotoxic activity in prostate cancer cells: DU145 (23.8±1.2 µM vs 151.4±23.7 µM for abiraterone), 22Rv1 (35.9±5.6 µM vs 109.9±35.2 µM for abiraterone) and LNCaP (22.9±0.5 µM vs 28.8±1.6 µM for abiraterone). Testosterone concentration in blood serum of BDF1 mice reduced by 80% after 10-day treatment. Inhibition of the tumors’ growth in 22Rv1 xenograft model was statistically significant when using alsevirone in comparison with the control group: average tumor volume was 171.6±50.1 mm3 (р=0.022) vs 424.2±70.3 mm3 in control, with tumor growth inhibition index of 59%.
CONCLUSIONS: Alsevirone has a higher cytotoxic potential against prostate cancer cells (DU145, LNCaP and 22Rv1) compared to abiraterone. Alsevirone demonstrated the ability to reduce the concentration of testosterone in the blood serum of BDF1 mice, and statistically significant antitumor activity in 22Rv1 xenograft models.
prostate cancer / cell line / CYP17A1 inhibitor / resistance to anticancer agent
| [1] |
Kaprin AD, Starinskii VV, Shakhzadova AO, editors. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2020 godu. Moscow: MNIOI im. P.A. Gertsena — NMRRC of the Ministry of Health of Russia branch; 2022. (In Russ). |
| [2] |
Состояние онкологической помощи населению России в 2020 году / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой, Москва : МНИОИ имени П.А. Герцена − филиал ФГБУ «НМИЦ радиологии», 2021. |
| [3] |
Vasaitis TS, Bruno RD, Njar VCO. CYP17 inhibitors for prostate cancer therapy. The Journal of Steroid Biochemistry and Molecular Biology. 2011;125(1-2):23–31. doi: 10.1016/j.jsbmb.2010.11.005 |
| [4] |
Vasaitis T.S., Bruno R.D., Njar V.C.O. CYP17 inhibitors for prostate cancer therapy // The Journal of Steroid Biochemistry and Molecular Biology. 2011. Vol. 125, N 1-2. P. 23–31. doi: 10.1016/j.jsbmb.2010.11.005 |
| [5] |
de Bono JS, North S, Saad F, et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. The New England journal of medicine. 2011;364(21):1995–2005. doi: 10.1056/NEJMoa1014618 |
| [6] |
de Bono J.S., North S., Saad F., et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer // The New England journal of medicine. 2011. Vol. 364, N 21. P. 1995–2005. doi: 10.1056/NEJMoa1014618 |
| [7] |
Auchus ML, Auchus RJ. Human steroid biosynthesis for the oncologist. Journal of investigative medicine. 2012;60(2):495–503. doi: 10.2310/JIM.0b013e3182408567 |
| [8] |
Auchus M.L., Auchus R.J. Human steroid biosynthesis for the oncologist // Journal of investigative medicine. 2012. Vol. 60, N 2. P. 495–503. doi: 10.2310/JIM.0b013e3182408567 |
| [9] |
Udhane SS, Dick B, Hu Q, Hartmann RW, Pandey AV. Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochemical and Biophysical Research Communications. 2016;477(4):1005–1010. doi: 10.1016/j.bbrc.2016.07.019 |
| [10] |
Udhane S.S., Dick B., Hu Q., Hartmann R.W., Pandey A.V. Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis // Biochemical and Biophysical Research Communications. 2016. Vol. 477, N 4. P. 1005–1010. doi: 10.1016/j.bbrc.2016.07.019 |
| [11] |
Grossebrummel H, Tilmann P, Mandelkow R, et al. Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. International Journal of Oncology. 2016;48(2):793–800. doi: 10.3892/ijo.2015.3274 |
| [12] |
Grossebrummel H., Tilmann P., Mandelkow R., et al. Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways // International Journal of Oncology. 2016. Vol. 48, N 2. P. 793–800. doi: 10.3892/ijo.2015.3274 |
| [13] |
Bruno RD, Gover TD, Burger AM, et al. 17α-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Molecular cancer therapeutics. 2008;7(9):2828–2836. doi: 10.1158/1535-7163.MCT-08-0336 |
| [14] |
Bruno R.D., Gover T.D., Burger A.M., et al. 17α-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response // Molecular cancer therapeutics. 2008. Vol. 7, N 9. P. 2828–2836. doi: 10.1158/1535-7163.MCT-08-0336 |
| [15] |
Bruno RD, Vasaitis TS, Gediya LK, et al. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids. 2011;76(12):1268–1279. doi: 10.1016/j.steroids.2011.06.002 |
| [16] |
Bruno R.D., Vasaitis T.S., Gediya L.K., et al. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model // Steroids. 2011. Vol. 76, N 12. P. 1268–1279. doi: 10.1016/j.steroids.2011.06.002 |
| [17] |
Stulov SV, Tkachev YaV, Novikov RA, et al. Synthesis of 21-nitrogen substituted pregna-5,17(20)-dienes from pregnenolone. Steroids. 2012;77(1-2):77–84. doi: 10.1016/j.steroids.2011.10.007 |
| [18] |
Stulov S.V., Tkachev Ya.V., Novikov R.A., et al. Synthesis of 21-nitrogen substituted pregna-5,17(20)-dienes from pregnenolone // Steroids. 2012. Vol. 77, N 1-2. P. 77–84. doi: 10.1016/j.steroids.2011.10.007 |
| [19] |
Stulov SV, Dugin NO, Zharkova MS, et al. Interaction of novel oxazoline derivatives of 17(20)e-pregna-5,17(20)-diene with cytochrome P450 17A1. Biomeditsinskaya Khimiya. 2016;62(1):38–44. (In Russ). doi: 10.18097/PBMC20166201038 |
| [20] |
Стулов С.В., Дугин Н.О., Жаркова М.С., и др. Взаимодействие новых оксазолиновых производных 17(20)е-прегна-5,17(20)-диена с цитохромом P450 17A1 // Биомедицинская химия. 2016. Т. 62, № 1. С. 38–44. doi: 10.18097/PBMC20166201038 |
| [21] |
Kuzikov AV, Dugin NO, Stulov SV, et al. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids. 2014;88:66–71. doi: 10.1016/j.steroids.2014.06.014 |
| [22] |
Kuzikov A.V., Dugin N.O., Stulov S.V., et al. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitors // Steroids. 2014. Vol. 88. P. 66–71. doi: 10.1016/j.steroids.2014.06.014 |
| [23] |
Kramer WG, Vince B, McGarry C. Comparison of the pharmacokinetics (PK) of galeterone novel oral formulations. Journal of Clinical Oncology. 2013;31(15 Suppl.):e16075–e16075. doi: 10.1200/jco.2013.31.15_suppl.e16075 |
| [24] |
Kramer W.G., Vince B., McGarry C. Comparison of the pharmacokinetics (PK) of galeterone novel oral formulations // Journal of Clinical Oncology. 2013. Vol. 31, N 15 (Suppl.). P. e16075–e16075. doi: 10.1200/jco.2013.31.15_suppl.e16075 |
| [25] |
Yu Z, Cai C, Gao S, et al. Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor. Clinical cancer research. 2014;20(15):4075–4085. doi: 10.1158/1078-0432.ccr-14-0292 |
| [26] |
Yu Z., Cai C., Gao S., et al. Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor // Clinical cancer research. 2014. Vol. 20, N 15. P. 4075–4085. doi: 10.1158/1078-0432.ccr-14-0292 |
| [27] |
Kostin VA, Zolottsev VA, Veselovskii AV, et al. Alsevirone, 2’-[((E)-3β-hydroxyandrost-5-en-17-ylidene)methyl]-4’,5’-dihydro-1’,3’-oxazole - perspektivnyi kandidat dlya razrabotki novykh protivorakovykh preparatov. Rossiiskii bioterapevticheskii zhurnal. 2017;16(S1):45–46. (In Russ). |
| [28] |
Костин В.А., Золотцев В.А., Веселовский А.В., и др. Алсевирон (2»-{[(E)-3Р-гидроксиандрост-5-ен-17-илиден] метил}-4»,5»-дигидро-1»,3»-оксазол) - перспективный кандидат для разработки новых противораковых препаратов // Российский биотерапевтический журнал. 2017. Т. 16, № S1. С. 45–46. |
| [29] |
Zolottsev VA, Latysheva AS, Pokrovskii VS, et al. Steroidnye kon”yugaty kak potentsial’nye protivoopukholevye agenty. Rossiiskii bioterapevticheskii zhurnal. 2020;19(1):22–52. (In Russ). |
| [30] |
Золотцев В.A., Латышева A.С., Покровский В.С., и др. Стероидные конъюгаты как потенциальные противоопухолевые агенты // Российский биотерапевтический журнал. 2020. Т. 19, № 1. C. 22–52. |
| [31] |
Kostin VA, Zolottsev VA, Kuzikov AV, et al. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids. 2016;115:114–122. doi: 10.1016/j.steroids.2016.06.002 |
| [32] |
Kostin V.A., Zolottsev V.A., Kuzikov A.V., et al. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity // Steroids. 2016. Vol. 115. P. 114–122. doi: 10.1016/j.steroids.2016.06.002 |
| [33] |
Koumakpayi IH, Diallo J-S, Le Page C, et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clinical Cancer Research. 2006;12(9):2730–2737. doi: 10.1158/1078-0432.ccr-05-2242 |
| [34] |
Koumakpayi I.H., Diallo J.-S., Le Page C., et al. Expression and nuclear localization of ErbB3 in prostate cancer // Clinical Cancer Research. 2006. Vol. 12, N 9. P. 2730–2737. doi: 10.1158/1078-0432.ccr-05-2242 |
| [35] |
Seitz AK, Thoene S, Bietenbeck A, et al. AR-V7 in Peripheral Whole Blood of Patients with Castration-resistant Prostate Cancer: Association with Treatment-specific Outcome Under Abiraterone and Enzalutamide. European Urology. 2017;72(5):828–834. doi: 10.1016/j.eururo.2017.07.024 |
| [36] |
Seitz A.K., Thoene S., Bietenbeck A., et al. AR-V7 in Peripheral Whole Blood of Patients with Castration-resistant Prostate Cancer: Association with Treatment-specific Outcome Under Abiraterone and Enzalutamide // European Urology. 2017. Vol. 72, N 5. P. 828–834. doi: 10.1016/j.eururo.2017.07.024 |
| [37] |
Buhmeida A, Pyrhönen S, Laato M, et al. Prognostic factors in prostate cancer. Diagnostic Pathology. 2006;1(1). doi: 10.1186/1746-1596-1-4 |
| [38] |
Buhmeida A., Pyrhönen S., Laato M., et al. Prognostic factors in prostate cancer // Diagnostic Pathology. 2006. Vol. 1, N 1. doi: 10.1186/1746-1596-1-4 |
| [39] |
Alyamani M, Li Z, Berk M, et al. Steroidogenic Metabolism of Galeterone Reveals a Diversity of Biochemical Activities. Cell Chemical Biology. 2017;24(7):825–832.e6. doi: 10.1016/j.chembiol.2017.05.020 |
| [40] |
Alyamani M., Li Z., Berk M., et al. Steroidogenic Metabolism of Galeterone Reveals a Diversity of Biochemical Activities // Cell Chemical Biology. 2017. Vol. 24, N 7. P. 825–832.e6. doi: 10.1016/j.chembiol.2017.05.020 |
| [41] |
Oksala R, Moilanen A, Riikonen R, et al. Discovery and development of ODM-204: A Novel nonsteroidal compound for the treatment of castration-resistant prostate cancer by blocking the androgen receptor and inhibiting CYP17A1. The Journal of Steroid Biochemistry and Molecular Biology. 2019;192:105115. doi: 10.1016/j.jsbmb.2018.02.004 |
| [42] |
Oksala R., Moilanen A., Riikonen R., et al. Discovery and development of ODM-204: A Novel nonsteroidal compound for the treatment of castration-resistant prostate cancer by blocking the androgen receptor and inhibiting CYP17A1 // The Journal of Steroid Biochemistry and Molecular Biology. 2019. Vol. 192. P. 105115. doi: 10.1016/j.jsbmb.2018.02.004 |
| [43] |
Gomella LG Effective testosterone suppression for prostate cancer: is there a best castration therapy? Reviews in Urology. 2009;11(2):52–60. |
| [44] |
Gomella L.G. Effective testosterone suppression for prostate cancer: is there a best castration therapy? // Reviews in urology. 2009. Vol. 11, N 2. P. 52–60. |
Eco-Vector
/
| 〈 |
|
〉 |