In vitro investigation of the photo-induced activity of positively charged phthalocyanines

A D Plyutinskaya , R I Yakubovskaya , E A Luk\"yanets , V M Negrimovskiy , V I Chissov , A D Plyutinskaya , R I Yakubovskaya , E A Lukyanets , V M Negrimovsky , V I Chissov

Russian Journal of Oncology ›› 2011, Vol. 16 ›› Issue (2) : 25 -27.

PDF
Russian Journal of Oncology ›› 2011, Vol. 16 ›› Issue (2) : 25 -27. DOI: 10.17816/onco39833
Articles
other

In vitro investigation of the photo-induced activity of positively charged phthalocyanines

Author information +
History +
PDF

Abstract

The photo-induced antitumor activity of water-soluble derivatives of metal-free phthalocyanine and its metallic complexes (Zn, Al), which contained positively charged ionogenic groups as substituents, was investigated. Cationic photosensitizers were shown to rapidly penetrate into tumor cells and to effectively accumulate in them; their phototoxicity depended on the structure of side substituents, the nature of the central atom, the incubation time of photosensitizers to radiation, and the type of tumor cells. The highest activity was found in the choline derivative of zinc phthalocyanine (ZnPcCho18): the 50 inhibitory concentration was 0.30±0.08 μM for HEp2 cell cultures, 0.48±0.09 μM for A549, 1.07±0.12 μM, for T24, and 2±0.13 μM for HT29.

Keywords

positively charged phthalocyanines / photodynamic exposure / HEp2 cell culture / photosensitizers

Cite this article

Download citation ▾
A D Plyutinskaya, R I Yakubovskaya, E A Luk\"yanets, V M Negrimovskiy, V I Chissov, A D Plyutinskaya, R I Yakubovskaya, E A Lukyanets, V M Negrimovsky, V I Chissov. In vitro investigation of the photo-induced activity of positively charged phthalocyanines. Russian Journal of Oncology, 2011, 16(2): 25-27 DOI:10.17816/onco39833

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angelov I., Mantareva V., Kussovski V. et al. // Proc. of the SPIE. - 2008. - Vol. 7027. - P. 702717-702718.

[2]

Ball D. J., Mayhew S., Wood S. R. et al. // Photochem. Photobiol. - 1999. - Vol. 69, N 3. - P. 390-396.

[3]

Carmichael J., DeGraff W. G., Gazdar A. F. et al. // Cancer Res. - 1987. - Vol. 47. - P. 936-942.

[4]

Choi C. F., Huang J. D., Lo P. C. et al. // Org. Biomol. Chem. - 2008. - Vol. 6, N 12. - P. 2173-2181.

[5]

5. De Filippis M. P., Dei D., Fantetti L., Roncucci G. // Tetrahedron Lett. - 2000. - Vol. 41, N 47. - P. 9143-9147.

[6]

Durmus M., Nyokong T. // Photochem. Photobiol. Sci. - 2007. - Vol. 6, N 6. - P. 659-668.

[7]

Hairong L. I., Jensen T. J., Fronczek F. R. et al. // J. Med. Chem. - 2008. - Vol. 51, N 3. - P. 502-511.

[8]

Jori G. // J. Environ. Pathol. Toxicol. Oncol. - 2006. - Vol. 25, N 1-2. - P. 505-519.

[9]

Kuznetsova N., Makarov D., Yuzhakova O. et al. // Abstracts of 7-th International Symposium on Photodynamic Therapy and Photodiagnosis in Clinical Practice, October 7-11 2008, Brixen, Italy. - P. 125.

[10]

Li H., Jensen T. J., Fronczek F. R., Vicente M. G. // J. Med. Chem. - 2008. - Vol. 51, N 3. - P. 502-511.

[11]

Liu J. Y., Jiang X. J., Fong W. P., Ng D. K. // Org. Biomol. Chem. - 2008. - Vol. 6, N 24. - P. 4560-4566.

[12]

Machado A. H., Braga F. M., Soares C. P. et al. // Photomed. Laser Surg. - 2007. - Vol. 25, N 3. - P. 220-228.

[13]

Wöhrle D., Iskander N., Graschew G. et al. // Photochem. Photobiol. - 1990. - Vol. 51, N 3. - P. 351-356.

[14]

Wood S. R., Holroyd J. A., Brown S. B. // Photochem. Photobiol. - 1997. - Vol. 65, N 3. - P. 397-402.

[15]

Yslas E. I., Durantini E. N., Rivarola V. A. // Bioorg. Med. Chem. - 2007. - Vol. 15, N 13. - P. 4651-4660.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/