Molecular genetics features of anaplastic thyroid carcinoma
Anastasia K. Musonova , Vladimir D. Nazarov , Daria V. Sidorenko , Aram A. Musaelyan , Ekaterina A. Alekseeva , Daria A. Kuzovenkova , Evgeniya S. Kozorezova , Sergey L. Vorobev , Sergey V. Orlov , Aleksandrа V. Mazing , Sergey V. Lapin , Vladimir L. Emanuel
Russian Journal of Oncology ›› 2022, Vol. 27 ›› Issue (2) : 59 -70.
Molecular genetics features of anaplastic thyroid carcinoma
INTRODUCTION: Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer accounting for 1–2% of all malignancies. Systemic therapy remains the main treatment strategy. Targeted therapy and immunotherapy are prescribed when certain molecular genetic aberrations are detected.
THE AIM: To investigate the molecular genetic profile of samples of anaplastic thyroid carcinoma.
MATERIALS AND METHODS: The study included 37 patients with ATC. Mutation V600E BRAF, mutations in the gene NRAS and KRAS were detected by allele-specific polymerase chain reaction (AS-PCR). Microsatellite instability (MSI) was determined by fragment analysis in according to ESMO recommendations. Mutations in the promoter region of the TERT gene were used by Sanger sequencing. NTRK1, EML4-ALK, PAX8/PPARy и RET/PTC translocations were determined in all patients with ATC by real-time polymerase chain reaction (PCR).
RESULTS: According to the results of the study, the frequency of the V600E mutation in the BRAF gene was 32.4% (12/37). The frequency of aberrations in the NRAS, KRAS genes in anaplastic thyroid carcinoma was 13.5% (n=5). The prevalence of point mutations in the promoter gene TERT in food samples of ATC was 24.3% (n=9). MSI was found in 2.7% (1/37) of cases of anapalastic thyroid carcinoma. NTRK1, EML4-ALK, PAX8/PPARy and RET/PTC translocations were not detected in cases with anaplastic thyroid carcinoma.
CONCLUSION: The further study of the main specific molecular targets in cancer cells will allow to personalize the tactics of patients with anaplastic thyroid carcinoma.
аnaplastic thyroid carcinoma / BRAF / NRAS / KRAS / TERT / NTRK1 / EML4-ALK / PAX8/PPARy / RET/PTC / microsatellite instability (MSI)
| [1] |
Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid. 2020;30(8):1132–1140. doi: 10.1089/thy.2019.0415 |
| [2] |
Pereira M., Williams V.L., Hallanger Johnson J., Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations // Thyroid. 2020. Vol. 30, N 8. P. 1132–1140. doi: 10.1089/thy.2019.0415 |
| [3] |
Lin B, Ma H, Ma M, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888–5896. |
| [4] |
Lin B., Ma H., Ma M., et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis // Am J Transl Res. 2019. Vol. 11, N 9. P. 5888–5896. |
| [5] |
Maniakas A, Dadu R, Busaidy NL, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–1404. doi: 10.1001/jamaoncol.2020.3362 |
| [6] |
Maniakas A., Dadu R., Busaidy N.L., et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000-2019 // JAMA Oncol. 2020. Vol. 6, N 9. P. 1397–1404. doi: 10.1001/jamaoncol.2020.3362 |
| [7] |
Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–3068. doi: 10.1158/1078-0432.CCR-18-0373 |
| [8] |
Pozdeyev N., Gay L.M., Sokol E.S., et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers // Clin Cancer Res. 2018. Vol. 24, N 13. P. 3059–3068. doi: 10.1158/1078-0432.CCR-18-0373 |
| [9] |
Volante M, Lam AK, Papotti M, et al. molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021;32:63–76. doi: 10.1007/s12022-021-09665-2 |
| [10] |
Volante M., Lam A.K., Papotti M., et al. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? // Endocr Pathol. 2021. Vol. 32, N 1. P. 63–76. doi: 10.1007/s12022-021-09665-2 |
| [11] |
Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/JCI85271 |
| [12] |
Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers // J Clin Invest. 2016. Vol. 126, N 3. P. 1052–1066. doi: 10.1172/JCI85271 |
| [13] |
Quiros RM, Ding HG, Gattuso P, et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer. 2005;103(11):2261–2268. doi: 10.1002/cncr.21073 |
| [14] |
Quiros R.M., Ding H.G., Gattuso P., et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations // Cancer. 2005. Vol. 103, N 11. P. 2261–2268. doi: 10.1002/cncr.21073 |
| [15] |
Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–1517. doi: 10.1089/thy.2020.0086 |
| [16] |
Xu B., Fuchs T., Dogan S., et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases // Thyroid. 2020. Vol. 30, N 10. P. 1505–1517. doi: 10.1089/thy.2020.0086 |
| [17] |
Kebebew E, Greenspan FS, Clark OH, et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330–1335. doi: 10.1002/cncr.20936 |
| [18] |
Kebebew E., Greenspan F.S., Clark O.H., et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors // Cancer. 2005. Vol. 103, N 7. P. 1330–1335. doi: 10.1002/cncr.20936 |
| [19] |
Yoo SK, Lee S, Kim SJ, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239. doi: 10.1371/journal.pgen.1006239 |
| [20] |
Yoo S.K., Lee S., Kim S.J., et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers // PLoS Genet. 2016. Vol. 12, N 8. P. e1006239. doi: 10.1371/journal.pgen.1006239 |
| [21] |
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–690. doi: 10.1016/j.cell.2014.09.050 |
| [22] |
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. Vol. 159, N 3. P. 676–690. doi: 10.1016/j.cell.2014.09.050 |
| [23] |
Mitmaker E, Alvarado C, Bégin LR, Trifiro M. Microsatellite instability in benign and malignant thyroid neoplasms. J Surg Res. 2008;150(1):40–48. doi: 10.1016/j.jss.2007.12.760 |
| [24] |
Mitmaker E., Alvarado C., Bégin L.R., Trifiro M. Microsatellite instability in benign and malignant thyroid neoplasms // J Surg Res. 2008. Vol. 150, N 1. P. 40–48. doi: 10.1016/j.jss.2007.12.760 |
| [25] |
Ragazzi M, Torricelli F, Donati B, et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch. 2021. 478(2):265–281. doi: 10.1007/s00428-020-02891-9 |
| [26] |
Ragazzi M., Torricelli F., Donati B., et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature // Virchows Arch. 2021. Vol. 478, N 2. P. 265–281. doi: 10.1007/s00428-020-02891-9 |
| [27] |
Pekova B, Sykorova V, Mastnikova K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel). 2021;13:1932. doi: 10.3390/cancers13081932 |
| [28] |
Pekova B., Sykorova V., Mastnikova K., et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis // Cancers (Basel). 2021. Vol. 13, N 8. P. 1932. doi: 10.3390/cancers13081932 |
| [29] |
Godbert Y, Henriques de Figueiredo B, Bonichon F, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33(20):e84–e87. doi: 10.1200/JCO.2013.49.6596 |
| [30] |
Godbert Y., Henriques de Figueiredo B., Bonichon F., et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma // J Clin Oncol. 2015. Vol. 33, N 20. P. e84–e87. doi: 10.1200/JCO.2013.49.6596 |
| [31] |
Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite Instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–820. doi: 10.1158/1078-0432.CCR-15-1678 |
| [32] |
Dudley J.C., Lin M.T., Le D.T., Eshleman J.R. Microsatellite Instability as a Biomarker for PD-1 blockade // Clin Cancer Res. 2016. Vol. 22, N 4. P. 813–820. doi: 10.1158/1078-0432.CCR-15-1678 |
| [33] |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596 |
| [34] |
Le D.T., Uram J.N., Wang H., et al. PD-1 blockade in tumors with mismatch-repair deficiency // N Engl J Med. 2015. Vol. 372, N 26. P. 2509–2520. doi: 10.1056/NEJMoa1500596 |
| [35] |
Jarry A, Masson D, Cassagnau E, et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004;18(5):349–352. doi: 10.1016/j.mcp.2004.05.004 |
| [36] |
Jarry A., Masson D., Cassagnau E., et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E // Mol Cell Probes. 2004. Vol. 18, N 5. P. 349–352. doi: 10.1016/j.mcp.2004.05.004 |
| [37] |
Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232–1243. doi: 10.1093/annonc/mdz116 |
| [38] |
Luchini C., Bibeau F., Ligtenberg M.J.L., et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach // Ann Oncol. 2019. Vol. 30, N 8. P. 1232–1243. doi: 10.1093/annonc/mdz116 |
| [39] |
Rashid M, Agarwal A, Pradhan R, et al. Genetic alterations in anaplastic thyroid carcinoma. Indian J Endocrinol Metab. 2019;23(4):480–485. doi: 10.4103/ijem.IJEM_321_19 |
| [40] |
Rashid M., Agarwal A., Pradhan R., et al. Genetic alterations in anaplastic thyroid carcinoma // Indian J Endocrinol Metab. 2019. Vol. 23, N 4. P. 480–485. doi: 10.4103/ijem.IJEM_321_19 |
| [41] |
Sugitani I, Miyauchi A, Sugino K, et al. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6):1247–1254. doi: 10.1007/s00268-012-1437-z |
| [42] |
Sugitani I., Miyauchi A., Sugino K., et al. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients // World J Surg. 2012. Vol. 36, N 6. P. 1247–1254. doi: 10.1007/s00268-012-1437-z |
| [43] |
Prete A, Borges de Souza P, Censi S, et al. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne). 2020;11:102. doi: 10.3389/fendo.2020.00102 |
| [44] |
Prete A., Borges de Souza P., Censi S., et al. Update on fundamental mechanisms of thyroid cancer // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 102. doi: 10.3389/fendo.2020.00102 |
| [45] |
Gunda V, Gigliotti B, Ndishabandi D, et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br J Cancer. 2018;119(10):1223–1232. doi: 10.1038/s41416-018-0296-2 |
| [46] |
Gunda V., Gigliotti B., Ndishabandi D., et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer // Br J Cancer. 2018. Vol. 119, N 10. P. 1223–1232. doi: 10.1038/s41416-018-0296-2 |
| [47] |
Angell TE, Lechner MG, Jang JK, et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24(9):1385–1393. doi: 10.1089/thy.2014.0134 |
| [48] |
Angell T.E., Lechner M.G., Jang J.K., et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration // Thyroid. 2014. Vol. 24, N 9. P. 1385–1393. doi: 10.1089/thy.2014.0134 |
| [49] |
Brauner E, Gunda V, Vanden Borre P, et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget. 2016;7(13):17194–17211. doi: 10.18632/oncotarget.7839 |
| [50] |
Brauner E., Gunda V., Vanden Borre P., et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer // Oncotarget. 2016. Vol. 7, N 13. P. 17194–17211. doi: 10.18632/oncotarget.7839 |
| [51] |
Jang EK, Song DE, Sim SY, et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275–1281. doi: 10.1089/thy.2014.0053 |
| [52] |
Jang E.K., Song D.E., Sim S.Y., et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma // Thyroid. 2014. Vol. 24, N 8. P. 1275–1281. doi: 10.1089/thy.2014.0053 |
| [53] |
Ravi N, Yang M, Gretarsson S, et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers (Basel). 2019;11(3):402. doi: 10.3390/cancers11030402 |
| [54] |
Ravi N., Yang M., Gretarsson S., et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling // Cancers (Basel). 2019. Vol. 11, N 3. P. 402. doi: 10.3390/cancers11030402 |
| [55] |
Bonhomme B, Godbert Y, Perot G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254 |
| [56] |
Bonhomme B., Godbert Y., Perot G., et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases // Thyroid. 2017. Vol. 27, N 5. P. 682–692. doi: 10.1089/thy.2016.0254 |
| [57] |
Lai WA, Liu CY, Lin SY, et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers (Basel). 2020;12(7):1973. doi: 10.3390/cancers12071973 |
| [58] |
Lai W.A., Liu C.Y., Lin S.Y., et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors // Cancers (Basel). 2020. Vol. 12, N 7. P. 1973. doi: 10.3390/cancers12071973 |
| [59] |
Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–R155. doi: 10.1530/ERC-15-0533 |
| [60] |
Liu R., Xing M. TERT promoter mutations in thyroid cancer // Endocr Relat Cancer. 2016. Vol. 23, N 3. P. R143–R155. doi: 10.1530/ERC-15-0533 |
| [61] |
Gomes A. Genetic testing techniques. In: Pediatric cancer genetics. 2018. P. 47–64. doi: 10.1016/B978-0-323-48555-5.00005-3 |
| [62] |
Shen X, Liu R, Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr Relat Cancer. 2017;24(1):41–52. doi: 10.1530/ERC-16-0402 |
| [63] |
Shen X., Liu R., Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer // Endocr Relat Cancer. 2017. Vol. 24, N 1. P. 41–52. doi: 10.1530/ERC-16-0402 |
| [64] |
Lazzereschi D, Palmirotta R, Ranieri A, et al. Microsatellite instability in thyroid tumours and tumour-like lesions. Br J Cancer. 1999;79(2):340–345. doi: 10.1038/sj.bjc.6690054 |
| [65] |
Lazzereschi D., Palmirotta R., Ranieri A., et al. Microsatellite instability in thyroid tumours and tumour-like lesions // Br J Cancer. 1999. Vol. 79, N 2. P. 340–345. doi: 10.1038/sj.bjc.6690054 |
| [66] |
Rocha ML, Schmid KW, Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma — systematic review and discussion of current therapeutic options. Contemp Oncol (Pozn). 2021;25(3):213–223. doi: 10.5114/wo.2021.110052 |
| [67] |
Rocha M.L., Schmid K.W., Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma — systematic review and discussion of current therapeutic options // Contemp Oncol (Pozn). 2021. Vol. 25, N 3. P. 213–223. doi: 10.5114/wo.2021.110052 |
| [68] |
Wong KS, Lorch JH, Alexander EK, et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas. Thyroid. 2019;29(5):666–673. doi: 10.1089/thy.2018.0716 |
| [69] |
Wong K.S., Lorch J.H., Alexander E.K., et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas // Thyroid. 2019. Vol. 29, N 5. P. 666–673. doi: 10.1089/thy.2018.0716 |
| [70] |
Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54. doi: 10.3389/fendo.2012.00054 |
| [71] |
Romei C., Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma // Front Endocrinol (Lausanne). 2012. Vol. 3. P. 54. doi: 10.3389/fendo.2012.00054 |
| [72] |
Garcia-Rostan G, Camp RL, Herrero A, et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158(3):987–996. doi: 10.1016/s0002-9440(10)64045-x |
| [73] |
Garcia-Rostan G., Camp R.L., Herrero A., et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis // Am J Pathol. 2001. Vol. 158, N 3. P. 987–996. doi: 10.1016/s0002-9440(10)64045-x |
Musonova A.K., Nazarov V.D., Sidorenko D.V., Musaelyan A.A., Alekseeva E.A., Kuzovenkova D.A., Kozorezova E.S., Vorobev S.L., Orlov S.V., Mazing A.V., Lapin S.V., Emanuel V.L.
/
| 〈 |
|
〉 |