Molecular genetics features of anaplastic thyroid carcinoma

Anastasia K. Musonova , Vladimir D. Nazarov , Daria V. Sidorenko , Aram A. Musaelyan , Ekaterina A. Alekseeva , Daria A. Kuzovenkova , Evgeniya S. Kozorezova , Sergey L. Vorobev , Sergey V. Orlov , Aleksandrа V. Mazing , Sergey V. Lapin , Vladimir L. Emanuel

Russian Journal of Oncology ›› 2022, Vol. 27 ›› Issue (2) : 59 -70.

PDF
Russian Journal of Oncology ›› 2022, Vol. 27 ›› Issue (2) : 59 -70. DOI: 10.17816/onco115251
Clinical investigations
research-article

Molecular genetics features of anaplastic thyroid carcinoma

Author information +
History +
PDF

Abstract

INTRODUCTION: Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer accounting for 1–2% of all malignancies. Systemic therapy remains the main treatment strategy. Targeted therapy and immunotherapy are prescribed when certain molecular genetic aberrations are detected.

THE AIM: To investigate the molecular genetic profile of samples of anaplastic thyroid carcinoma.

MATERIALS AND METHODS: The study included 37 patients with ATC. Mutation V600E BRAF, mutations in the gene NRAS and KRAS were detected by allele-specific polymerase chain reaction (AS-PCR). Microsatellite instability (MSI) was determined by fragment analysis in according to ESMO recommendations. Mutations in the promoter region of the TERT gene were used by Sanger sequencing. NTRK1, EML4-ALK, PAX8/PPARy и RET/PTC translocations were determined in all patients with ATC by real-time polymerase chain reaction (PCR).

RESULTS: According to the results of the study, the frequency of the V600E mutation in the BRAF gene was 32.4% (12/37). The frequency of aberrations in the NRAS, KRAS genes in anaplastic thyroid carcinoma was 13.5% (n=5). The prevalence of point mutations in the promoter gene TERT in food samples of ATC was 24.3% (n=9). MSI was found in 2.7% (1/37) of cases of anapalastic thyroid carcinoma. NTRK1, EML4-ALK, PAX8/PPARy and RET/PTC translocations were not detected in cases with anaplastic thyroid carcinoma.

CONCLUSION: The further study of the main specific molecular targets in cancer cells will allow to personalize the tactics of patients with anaplastic thyroid carcinoma.

Keywords

аnaplastic thyroid carcinoma / BRAF / NRAS / KRAS / TERT / NTRK1 / EML4-ALK / PAX8/PPARy / RET/PTC / microsatellite instability (MSI)

Cite this article

Download citation ▾
Anastasia K. Musonova, Vladimir D. Nazarov, Daria V. Sidorenko, Aram A. Musaelyan, Ekaterina A. Alekseeva, Daria A. Kuzovenkova, Evgeniya S. Kozorezova, Sergey L. Vorobev, Sergey V. Orlov, Aleksandrа V. Mazing, Sergey V. Lapin, Vladimir L. Emanuel. Molecular genetics features of anaplastic thyroid carcinoma. Russian Journal of Oncology, 2022, 27(2): 59-70 DOI:10.17816/onco115251

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid. 2020;30(8):1132–1140. doi: 10.1089/thy.2019.0415

[2]

Pereira M., Williams V.L., Hallanger Johnson J., Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations // Thyroid. 2020. Vol. 30, N 8. P. 1132–1140. doi: 10.1089/thy.2019.0415

[3]

Lin B, Ma H, Ma M, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888–5896.

[4]

Lin B., Ma H., Ma M., et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis // Am J Transl Res. 2019. Vol. 11, N 9. P. 5888–5896.

[5]

Maniakas A, Dadu R, Busaidy NL, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–1404. doi: 10.1001/jamaoncol.2020.3362

[6]

Maniakas A., Dadu R., Busaidy N.L., et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000-2019 // JAMA Oncol. 2020. Vol. 6, N 9. P. 1397–1404. doi: 10.1001/jamaoncol.2020.3362

[7]

Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–3068. doi: 10.1158/1078-0432.CCR-18-0373

[8]

Pozdeyev N., Gay L.M., Sokol E.S., et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers // Clin Cancer Res. 2018. Vol. 24, N 13. P. 3059–3068. doi: 10.1158/1078-0432.CCR-18-0373

[9]

Volante M, Lam AK, Papotti M, et al. molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021;32:63–76. doi: 10.1007/s12022-021-09665-2

[10]

Volante M., Lam A.K., Papotti M., et al. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? // Endocr Pathol. 2021. Vol. 32, N 1. P. 63–76. doi: 10.1007/s12022-021-09665-2

[11]

Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/JCI85271

[12]

Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers // J Clin Invest. 2016. Vol. 126, N 3. P. 1052–1066. doi: 10.1172/JCI85271

[13]

Quiros RM, Ding HG, Gattuso P, et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer. 2005;103(11):2261–2268. doi: 10.1002/cncr.21073

[14]

Quiros R.M., Ding H.G., Gattuso P., et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations // Cancer. 2005. Vol. 103, N 11. P. 2261–2268. doi: 10.1002/cncr.21073

[15]

Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–1517. doi: 10.1089/thy.2020.0086

[16]

Xu B., Fuchs T., Dogan S., et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases // Thyroid. 2020. Vol. 30, N 10. P. 1505–1517. doi: 10.1089/thy.2020.0086

[17]

Kebebew E, Greenspan FS, Clark OH, et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330–1335. doi: 10.1002/cncr.20936

[18]

Kebebew E., Greenspan F.S., Clark O.H., et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors // Cancer. 2005. Vol. 103, N 7. P. 1330–1335. doi: 10.1002/cncr.20936

[19]

Yoo SK, Lee S, Kim SJ, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239. doi: 10.1371/journal.pgen.1006239

[20]

Yoo S.K., Lee S., Kim S.J., et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers // PLoS Genet. 2016. Vol. 12, N 8. P. e1006239. doi: 10.1371/journal.pgen.1006239

[21]

Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–690. doi: 10.1016/j.cell.2014.09.050

[22]

Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. Vol. 159, N 3. P. 676–690. doi: 10.1016/j.cell.2014.09.050

[23]

Mitmaker E, Alvarado C, Bégin LR, Trifiro M. Microsatellite instability in benign and malignant thyroid neoplasms. J Surg Res. 2008;150(1):40–48. doi: 10.1016/j.jss.2007.12.760

[24]

Mitmaker E., Alvarado C., Bégin L.R., Trifiro M. Microsatellite instability in benign and malignant thyroid neoplasms // J Surg Res. 2008. Vol. 150, N 1. P. 40–48. doi: 10.1016/j.jss.2007.12.760

[25]

Ragazzi M, Torricelli F, Donati B, et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch. 2021. 478(2):265–281. doi: 10.1007/s00428-020-02891-9

[26]

Ragazzi M., Torricelli F., Donati B., et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature // Virchows Arch. 2021. Vol. 478, N 2. P. 265–281. doi: 10.1007/s00428-020-02891-9

[27]

Pekova B, Sykorova V, Mastnikova K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel). 2021;13:1932. doi: 10.3390/cancers13081932

[28]

Pekova B., Sykorova V., Mastnikova K., et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis // Cancers (Basel). 2021. Vol. 13, N 8. P. 1932. doi: 10.3390/cancers13081932

[29]

Godbert Y, Henriques de Figueiredo B, Bonichon F, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33(20):e84–e87. doi: 10.1200/JCO.2013.49.6596

[30]

Godbert Y., Henriques de Figueiredo B., Bonichon F., et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma // J Clin Oncol. 2015. Vol. 33, N 20. P. e84–e87. doi: 10.1200/JCO.2013.49.6596

[31]

Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite Instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–820. doi: 10.1158/1078-0432.CCR-15-1678

[32]

Dudley J.C., Lin M.T., Le D.T., Eshleman J.R. Microsatellite Instability as a Biomarker for PD-1 blockade // Clin Cancer Res. 2016. Vol. 22, N 4. P. 813–820. doi: 10.1158/1078-0432.CCR-15-1678

[33]

Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596

[34]

Le D.T., Uram J.N., Wang H., et al. PD-1 blockade in tumors with mismatch-repair deficiency // N Engl J Med. 2015. Vol. 372, N 26. P. 2509–2520. doi: 10.1056/NEJMoa1500596

[35]

Jarry A, Masson D, Cassagnau E, et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004;18(5):349–352. doi: 10.1016/j.mcp.2004.05.004

[36]

Jarry A., Masson D., Cassagnau E., et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E // Mol Cell Probes. 2004. Vol. 18, N 5. P. 349–352. doi: 10.1016/j.mcp.2004.05.004

[37]

Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232–1243. doi: 10.1093/annonc/mdz116

[38]

Luchini C., Bibeau F., Ligtenberg M.J.L., et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach // Ann Oncol. 2019. Vol. 30, N 8. P. 1232–1243. doi: 10.1093/annonc/mdz116

[39]

Rashid M, Agarwal A, Pradhan R, et al. Genetic alterations in anaplastic thyroid carcinoma. Indian J Endocrinol Metab. 2019;23(4):480–485. doi: 10.4103/ijem.IJEM_321_19

[40]

Rashid M., Agarwal A., Pradhan R., et al. Genetic alterations in anaplastic thyroid carcinoma // Indian J Endocrinol Metab. 2019. Vol. 23, N 4. P. 480–485. doi: 10.4103/ijem.IJEM_321_19

[41]

Sugitani I, Miyauchi A, Sugino K, et al. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6):1247–1254. doi: 10.1007/s00268-012-1437-z

[42]

Sugitani I., Miyauchi A., Sugino K., et al. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients // World J Surg. 2012. Vol. 36, N 6. P. 1247–1254. doi: 10.1007/s00268-012-1437-z

[43]

Prete A, Borges de Souza P, Censi S, et al. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne). 2020;11:102. doi: 10.3389/fendo.2020.00102

[44]

Prete A., Borges de Souza P., Censi S., et al. Update on fundamental mechanisms of thyroid cancer // Front Endocrinol (Lausanne). 2020. Vol. 11. P. 102. doi: 10.3389/fendo.2020.00102

[45]

Gunda V, Gigliotti B, Ndishabandi D, et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br J Cancer. 2018;119(10):1223–1232. doi: 10.1038/s41416-018-0296-2

[46]

Gunda V., Gigliotti B., Ndishabandi D., et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer // Br J Cancer. 2018. Vol. 119, N 10. P. 1223–1232. doi: 10.1038/s41416-018-0296-2

[47]

Angell TE, Lechner MG, Jang JK, et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24(9):1385–1393. doi: 10.1089/thy.2014.0134

[48]

Angell T.E., Lechner M.G., Jang J.K., et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration // Thyroid. 2014. Vol. 24, N 9. P. 1385–1393. doi: 10.1089/thy.2014.0134

[49]

Brauner E, Gunda V, Vanden Borre P, et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget. 2016;7(13):17194–17211. doi: 10.18632/oncotarget.7839

[50]

Brauner E., Gunda V., Vanden Borre P., et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer // Oncotarget. 2016. Vol. 7, N 13. P. 17194–17211. doi: 10.18632/oncotarget.7839

[51]

Jang EK, Song DE, Sim SY, et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275–1281. doi: 10.1089/thy.2014.0053

[52]

Jang E.K., Song D.E., Sim S.Y., et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma // Thyroid. 2014. Vol. 24, N 8. P. 1275–1281. doi: 10.1089/thy.2014.0053

[53]

Ravi N, Yang M, Gretarsson S, et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers (Basel). 2019;11(3):402. doi: 10.3390/cancers11030402

[54]

Ravi N., Yang M., Gretarsson S., et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling // Cancers (Basel). 2019. Vol. 11, N 3. P. 402. doi: 10.3390/cancers11030402

[55]

Bonhomme B, Godbert Y, Perot G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254

[56]

Bonhomme B., Godbert Y., Perot G., et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases // Thyroid. 2017. Vol. 27, N 5. P. 682–692. doi: 10.1089/thy.2016.0254

[57]

Lai WA, Liu CY, Lin SY, et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers (Basel). 2020;12(7):1973. doi: 10.3390/cancers12071973

[58]

Lai W.A., Liu C.Y., Lin S.Y., et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors // Cancers (Basel). 2020. Vol. 12, N 7. P. 1973. doi: 10.3390/cancers12071973

[59]

Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–R155. doi: 10.1530/ERC-15-0533

[60]

Liu R., Xing M. TERT promoter mutations in thyroid cancer // Endocr Relat Cancer. 2016. Vol. 23, N 3. P. R143–R155. doi: 10.1530/ERC-15-0533

[61]

Gomes A. Genetic testing techniques. In: Pediatric cancer genetics. 2018. P. 47–64. doi: 10.1016/B978-0-323-48555-5.00005-3

[62]

Shen X, Liu R, Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr Relat Cancer. 2017;24(1):41–52. doi: 10.1530/ERC-16-0402

[63]

Shen X., Liu R., Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer // Endocr Relat Cancer. 2017. Vol. 24, N 1. P. 41–52. doi: 10.1530/ERC-16-0402

[64]

Lazzereschi D, Palmirotta R, Ranieri A, et al. Microsatellite instability in thyroid tumours and tumour-like lesions. Br J Cancer. 1999;79(2):340–345. doi: 10.1038/sj.bjc.6690054

[65]

Lazzereschi D., Palmirotta R., Ranieri A., et al. Microsatellite instability in thyroid tumours and tumour-like lesions // Br J Cancer. 1999. Vol. 79, N 2. P. 340–345. doi: 10.1038/sj.bjc.6690054

[66]

Rocha ML, Schmid KW, Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma — systematic review and discussion of current therapeutic options. Contemp Oncol (Pozn). 2021;25(3):213–223. doi: 10.5114/wo.2021.110052

[67]

Rocha M.L., Schmid K.W., Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma — systematic review and discussion of current therapeutic options // Contemp Oncol (Pozn). 2021. Vol. 25, N 3. P. 213–223. doi: 10.5114/wo.2021.110052

[68]

Wong KS, Lorch JH, Alexander EK, et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas. Thyroid. 2019;29(5):666–673. doi: 10.1089/thy.2018.0716

[69]

Wong K.S., Lorch J.H., Alexander E.K., et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas // Thyroid. 2019. Vol. 29, N 5. P. 666–673. doi: 10.1089/thy.2018.0716

[70]

Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54. doi: 10.3389/fendo.2012.00054

[71]

Romei C., Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma // Front Endocrinol (Lausanne). 2012. Vol. 3. P. 54. doi: 10.3389/fendo.2012.00054

[72]

Garcia-Rostan G, Camp RL, Herrero A, et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158(3):987–996. doi: 10.1016/s0002-9440(10)64045-x

[73]

Garcia-Rostan G., Camp R.L., Herrero A., et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis // Am J Pathol. 2001. Vol. 158, N 3. P. 987–996. doi: 10.1016/s0002-9440(10)64045-x

RIGHTS & PERMISSIONS

Musonova A.K., Nazarov V.D., Sidorenko D.V., Musaelyan A.A., Alekseeva E.A., Kuzovenkova D.A., Kozorezova E.S., Vorobev S.L., Orlov S.V., Mazing A.V., Lapin S.V., Emanuel V.L.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/