Phagocytic and chemiluminescent activity of blood neutrophils in patients with bladder cancer
Andrei A. Savchenko , Ruslan A. Zukov , Michael A. Firsov , Evgeniy V. Slepov , Vasiliy D. Belenyuk , Ivan I. Gvozdev , Alexander G. Borisov
Russian Journal of Oncology ›› 2021, Vol. 26 ›› Issue (2) : 39 -48.
Phagocytic and chemiluminescent activity of blood neutrophils in patients with bladder cancer
BACKGROUND: Tumor microenvironment modulates (including with the help of metabolites) the functional activity of the neutrophils that contribute to the reprogramming of the antitumor activity into a protumor one.
AIMS: To study the phagocytic and chemiluminescent activity of neutrophils in patients with bladder cancer (BC) under the influence of metabolites of the tumor microenvironment in vitro.
MATERIALS AND METHODS: We examined 37 patients with superficial BC (T1,а,isN0M0) and considered 32 healthy individuals as a control group. Neutrophils isolated from their blood were incubated in vitro with lactate, ADP, and glutamate. Phagocytic activity was examined using flow cytometry, and the intensity of the respiratory burst of neutrophils was evaluated via chemiluminescent analysis.
RESULTS: In patients with BC, the phagocytic index (PhI) values are reduced compared to the control sample (without in vitro metabolite exposure) and when exposed to glutamate, while the effect of lactate on cells causes an increase in the phagocytic number and PhI. Moreover, under the influence of lactate in vitro, the activity of spontaneous and zymosan-induced chemiluminescence of neutrophils decreases. ADP causes a decrease in spontaneous chemiluminescence only. Finally, under the influence of glutamate, the indicators of spontaneous and induced chemiluminescence decrease.
CONCLUSIONS: Under the influence of lactate and ADP (products of tumor cells), the phagocytic activity of a population of immature neutrophils is stimulated, which leads to myeloid suppressor cells that inhibit antitumor immunity. Thus, metabolites of the tumor microenvironment modulate the activity of the respiratory burst of neutrophils in patients with BC.
bladder cancer / neutrophils / metabolites / phagocytic activity / chemiluminescent activity
| [1] |
Nosov AK, Krotov NF, Berkut MV. Atlantis exploration: predictive biomarkers to immunotherapy response. Cancer Urology. 2021;17(1):167–177. (In Russ). doi: 10.17650/1726-9776-2021-17-1-167-177 |
| [2] |
Носов А.К., Кротов Н.Ф., Беркут М.В. В поисках Атлантиды: предиктивные биомаркеры ответа на иммунотерапию // Онкоурология. 2021. Т. 17, № 1. С. 167–177. doi: 10.17650/1726-9776-2021-17-1-167-177 |
| [3] |
Rasteiro AM, Sá e Lemos E, Oliveira PA, Gil da Costa RM. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Veterinary Sciences. 2022;9(3):107. doi: 10.3390/vetsci9030107 |
| [4] |
Rasteiro A.M., Sá e Lemos E., Oliveira P.A., Gil da Costa R.M. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy // Veterinary Sciences. 2022. Vol. 9, N 3. P. 107. doi: 10.3390/vetsci9030107 |
| [5] |
Pshikhachev AM, Mikhaleva LM, Gusniev MA, et al. Clinical and morphological features of non-muscle invasive bladder cancer: implications for treatment, prognosis and relapse of the disease (literature review). Cancer Urology. 2021;17(1):134–141. (In Russ). doi: 10.17650/1726-9776-2021-17-1-134-141 |
| [6] |
Пшихачев А.М., Михалева Л.М., Гусниев М.А., и др. Клинико-морфологические особенности немышечно-инвазивного рака мочевого пузыря: влияние на лечение, прогноз и рецидив заболевания (обзор литературы) // Онкоурология. 2021. Т. 17, № 1. С. 134–141. doi: 10.17650/1726-9776-2021-17-1-134-141 |
| [7] |
Suchilova MM, Nikolaev AE, Shapiev AN, et al. Modern possibilities of radiological diagnosis of bladder cancer. Journal of Modern Oncology. 2021;22(4):101–108. (In Russ). doi: 10.26442/18151434.2020.4.200257 |
| [8] |
Сучилова М.М., Николаев А.Е., Шапиев А.Н., и др. Современные возможности лучевой диагностики рака мочевого пузыря // Современная онкология. 2020. Т. 22, № 4. С. 101−108. doi: 10.26442/18151434.2020.4.200257 |
| [9] |
Guillerey C. NK Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1273:69–90. doi: 10.1007/978-3-030-49270-0_4 |
| [10] |
Guillerey C. NK Cells in the Tumor Microenvironment // Adv Exp Med Biol. 2020. Vol. 1273, P. 69–90. doi: 10.1007/978-3-030-49270-0_4 |
| [11] |
Tallon de Lara P, Castanon H, Sterpi M, van den Broek M. Antimetastatic defense by CD8(+) T cells. Trends Cancer. 2022;8(2):145–157. doi: 10.1016/j.trecan.2021.10.006 |
| [12] |
Tallon de Lara P., Castanon H., Sterpi M., van den Broek M. Antimetastatic defense by CD8(+) T cells // Trends Cancer. 2022. Vol. 8, N 2. P. 145-157. doi: 10.1016/j.trecan.2021.10.006 |
| [13] |
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8 |
| [14] |
Zhao Y., Shao Q., Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment // Cell Mol Immunol. 2020. Vol. 17, N 1. P. 27–35. doi: 10.1038/s41423-019-0344-8 |
| [15] |
Sun Y, Chang W, Yao J, et al. Effect of immune checkpoint inhibitors in patients with gastric hepatoid adenocarcinoma: a case report and literature review. J Int Med Res. 2022;50(4):3000605221091095. doi: 10.1177/03000605221091095 |
| [16] |
Sun Y., Chang W., Yao J., et al. Effect of immune checkpoint inhibitors in patients with gastric hepatoid adenocarcinoma: a case report and literature review // J Int Med Res. 2022. Vol. 50, N 4. P. 3000605221091095. doi: 10.1177/03000605221091095 |
| [17] |
Yanagisawa T, Mori K, Katayama S, et al. Hematological prognosticators in metastatic renal cell cancer treated with immune checkpoint inhibitors: a meta-analysis. Immunotherapy. 2022;14(9):709–725. doi: 10.2217/imt-2021-0207 |
| [18] |
Yanagisawa T., Mori K., Katayama S., et al. Hematological prognosticators in metastatic renal cell cancer treated with immune checkpoint inhibitors: a meta-analysis // Immunotherapy. 2022. Vol. 14, N 9. P. 709–725. doi: 10.2217/imt-2021-0207 |
| [19] |
Jin L, Kim HS, Shi J. Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules. 2021;11(8). doi: 10.3390/biom11081170 |
| [20] |
Jin L., Kim H.S., Shi J. Neutrophil in the Pancreatic Tumor Microenvironment // Biomolecules. 2021. Vol. 11, N 8. P. doi: 10.3390/biom11081170 |
| [21] |
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest. 2021;131(6). doi: 10.1172/JCI143759 |
| [22] |
McFarlane A.J., Fercoq F., Coffelt S.B., Carlin L.M. Neutrophil dynamics in the tumor microenvironment // J Clin Invest. 2021. Vol. 131, N 6. P. doi: 10.1172/JCI143759 |
| [23] |
Zeindler J, Angehrn F, Droeser R, et al. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast Cancer Res Treat. 2019;177(3):581–589. doi: 10.1007/s10549-019-05336-3 |
| [24] |
Zeindler J., Angehrn F., Droeser R., et al. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer // Breast Cancer Res Treat. 2019. Vol. 177, N 3. P. 581–589. doi: 10.1007/s10549-019-05336-3 |
| [25] |
Matlung HL, Babes L, Zhao XW, et al. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep. 2018;23(13):3946–3959 e3946. doi: 10.1016/j.celrep.2018.05.082 |
| [26] |
Matlung H.L., Babes L., Zhao X.W., et al. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis // Cell Rep. 2018. Vol. 23, N 13. P. 3946–3959 e3946. doi: 10.1016/j.celrep.2018.05.082 |
| [27] |
Savchenko AA, Borisov AG, Modestov AA, et al. Phenotypic features and chemiluminescent activity of neutrophilic granulocytes in the patients with renal cancer. Medical Immunology (Russia). 2016;18(3):259–268. (In Russ.) doi: 10.15789/1563-0625-2016-3-259-268 |
| [28] |
Савченко А.А., Борисов А.Г., Модестов А.А., и др. Особенности взаимосвязи фенотипа и хемилюминесцентной активности нейтрофильных гранулоцитов у больных раком почки // Медицинская иммунология. 2016. Т. 18, № 3. С. 259−268. doi: 10.15789/1563-0625-2016-3-259-268 |
| [29] |
Langiu M, Palacios-Acedo AL, Crescence L, et al. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. Int J Mol Sci. 2022;23(3). doi: 10.3390/ijms23031257 |
| [30] |
Langiu M., Palacios-Acedo A.L., Crescence L., et al. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research // Int J Mol Sci. 2022. Vol. 23, N 3. P. doi: 10.3390/ijms23031257 |
| [31] |
Taucher E, Taucher V, Fink-Neuboeck N, et al. Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers (Basel). 2021;13(23). doi: 10.3390/cancers13235972 |
| [32] |
Taucher E., Taucher V., Fink-Neuboeck N., et al. Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung // Cancers (Basel). 2021. Vol. 13, N 23. doi: 10.3390/cancers13235972 |
| [33] |
Zhao Y, Rahmy S, Liu Z, et al. Rational targeting of immunosuppressive neutrophils in cancer. Pharmacol Ther. 2020;212:107556. doi: 10.1016/j.pharmthera.2020.107556 |
| [34] |
Zhao Y., Rahmy S., Liu Z., et al. Rational targeting of immunosuppressive neutrophils in cancer // Pharmacol Ther. 2020. Vol. 212. P. 107556. doi: 10.1016/j.pharmthera.2020.107556 |
| [35] |
De Meo ML, Spicer JD. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021;57:101595. doi: 10.1016/j.smim.2022.101595 |
| [36] |
De Meo M.L., Spicer J.D. The role of neutrophil extracellular traps in cancer progression and metastasis // Semin Immunol. 2021. Vol. 57. P. 101595. doi: 10.1016/j.smim.2022.101595 |
| [37] |
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne). 2021;8:735590. doi: 10.3389/fmed.2021.735590 |
| [38] |
Mao C., Xu X., Ding Y., Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine // Front Med (Lausanne). 2021. Vol. 8. P. 735590. doi: 10.3389/fmed.2021.735590 |
| [39] |
Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159–2167. doi: 10.1182/blood-2018-11-844548 |
| [40] |
Giese M.A., Hind L.E., Huttenlocher A. Neutrophil plasticity in the tumor microenvironment // Blood. 2019. Vol. 133, N 20. P. 2159–2167. doi: 10.1182/blood-2018-11-844548 |
| [41] |
Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–4566. doi: 10.1158/0008-5472.CAN-18-3962 |
| [42] |
Hinshaw D.C., Shevde L.A. The Tumor Microenvironment Innately Modulates Cancer Progression // Cancer Res. 2019. Vol. 79, N 18. P. 4557–4566. doi: 10.1158/0008-5472.CAN-18-3962 |
| [43] |
Vitale I, Manic G, Coussens LM, et al. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;30(1):36–50. doi: 10.1016/j.cmet.2019.06.001 |
| [44] |
Vitale I., Manic G., Coussens L.M., et al. Macrophages and Metabolism in the Tumor Microenvironment // Cell Metab. 2019. Vol. 30, N 1. P. 36–50. doi: 10.1016/j.cmet.2019.06.001 |
| [45] |
Kooshki L, Mahdavi P, Fakhri S, et al. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors. 2022;48(2):359–383. doi: 10.1002/biof.1799 |
| [46] |
Kooshki L., Mahdavi P., Fakhri S., et al. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer // Biofactors. 2022. Vol. 48, N 2. P. 359–383. doi: 10.1002/biof.1799 |
| [47] |
Pan T, Liu J, Xu S, et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics. 2020;10(2):516–536. doi: 10.7150/thno.37472 |
| [48] |
Pan T., Liu J., Xu S., et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells // Theranostics. 2020. Vol. 10, N 2. P. 516–536. doi: 10.7150/thno.37472 |
| [49] |
Zou J, Du K, Li S, et al. Glutamine Metabolism Regulators Associated with Cancer Development and the Tumor Microenvironment: A Pan-Cancer Multi-Omics Analysis. Genes (Basel). 2021;12(9). doi: 10.3390/genes12091305 |
| [50] |
Zou J., Du K., Li S., et al. Glutamine Metabolism Regulators Associated with Cancer Development and the Tumor Microenvironment: A Pan-Cancer Multi-Omics Analysis // Genes (Basel). 2021. Vol. 12, N 9. P. doi: 10.3390/genes12091305 |
| [51] |
Savchenko AA, Borisov AG, Beleniuk VD, Moshev AV. Changes in the subsets and phagocytic activity of monocytes in patients with kidney cancer under the influence of metabolites in vitro. Bulletin of Experimental Biology and Medicine. 2021;171(3):344–348. (In Russ). doi: 10.47056/0365-9615-2021-171-3-344-348 |
| [52] |
Савченко А.А., Борисов А.Г., Беленюк В.Д., Мошев А.В. Изменение субпопуляционного состава и фагоцитарной активности моноцитов у больных раком почки при воздействии метаболитов in vitro // Бюллетень экспериментальной биологии и медицины. 2021. Т. 171, № 3. С. 344−348. doi: 10.47056/0365-9615-2021-171-3-344-348 |
| [53] |
Savchenko AA, Kudryavtsev IV, Borisov AG. Methods of Estimation and the Role of Respiratory Burst in the Pathogenesis of Infectious and Inflammatory Diseases. Russian Journal of Infection and Immunity. 2018;7(4):327–340. (In Russ). doi: 10.15789/2220-7619-2017-4-327-340 |
| [54] |
Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно- воспалительных заболеваний // Инфекция и иммунитет. 2017. Т. 7, № 4. C. 327−340. doi: 10.15789/2220-7619-2017-4-327-340 |
| [55] |
Wu Q, Gurpinar A, Roberts M, et al. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. Biology (Basel). 2022;11(2). doi: 10.3390/biology11020183 |
| [56] |
Wu Q., Gurpinar A., Roberts M., et al. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre // Biology (Basel). 2022. Vol. 11, N 2. P. doi: 10.3390/biology11020183 |
| [57] |
Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. Elife. 2019;8. doi: 10.7554/eLife.50663 |
| [58] |
Bhagat T.D., Von Ahrens D., Dawlaty M., et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts // Elife. 2019. Vol. 8, N. P. doi: 10.7554/eLife.50663 |
| [59] |
Guerra L, Bonetti L, Brenner D. Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Rep. 2020;32(1):107848. doi: 10.1016/j.celrep.2020.107848 |
| [60] |
Guerra L., Bonetti L., Brenner D. Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy // Cell Rep. 2020. Vol. 32, N 1. P. 107848. doi: 10.1016/j.celrep.2020.107848 |
| [61] |
Layhadi JA, Fountain SJ. ATP-Evoked Intracellular Ca(2+) Responses in M-CSF Differentiated Human Monocyte-Derived Macrophage are Mediated by P2X4 and P2Y11 Receptor Activation. Int J Mol Sci. 2019;20(20). doi: 10.3390/ijms20205113 |
| [62] |
Layhadi J.A., Fountain S.J. ATP-Evoked Intracellular Ca(2+) Responses in M-CSF Differentiated Human Monocyte-Derived Macrophage are Mediated by P2X4 and P2Y11 Receptor Activation // Int J Mol Sci. 2019. Vol. 20, N 20. P. doi: 10.3390/ijms20205113 |
| [63] |
Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sanchez-Garcia FJ. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Front Immunol. 2016;7:52. doi: 10.3389/fimmu.2016.00052 |
| [64] |
Romero-Garcia S., Moreno-Altamirano M.M., Prado-Garcia H., Sanchez-Garcia F.J. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance // Front Immunol. 2016. Vol. 7. P. 52. doi: 10.3389/fimmu.2016.00052 |
| [65] |
Bleve A, Consonni FM, Porta C, et al. Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel). 2022;14(3). doi: 10.3390/cancers14030510 |
| [66] |
Bleve A., Consonni F.M., Porta C., et al. Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective // Cancers (Basel). 2022. Vol. 14, N 3. P. doi: 10.3390/cancers14030510 |
| [67] |
Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun. 2017;85:117–125. doi: 10.1016/j.jaut.2017.07.010 |
| [68] |
Sica A., Massarotti M. Myeloid suppressor cells in cancer and autoimmunity // J Autoimmun. 2017. Vol. 85. P. 117–125. doi: 10.1016/j.jaut.2017.07.010 |
Savchenko A.A., Zukov R.A., Firsov M.A., Slepov E.V., Belenyuk V.D., Gvozdev I.I., Borisov A.G.
/
| 〈 |
|
〉 |