Study of the functioning of mirror neurons in normal conditions, in neurological and psychiatric diseases: a systematic review of the literature

Aynur A. Ragimova , Gleb S. Perevoznyuk , Beatrice A. Volel , Dmitry S. Petelin , Daria S. Ponomareva , Mikhail I. Salamatin , Artyom A. Batov , Matteo Feurra

Neurology Bulletin ›› 2024, Vol. LVI ›› Issue (3) : 272 -289.

PDF (585KB)
Neurology Bulletin ›› 2024, Vol. LVI ›› Issue (3) : 272 -289. DOI: 10.17816/nb632494
Reviews
review-article

Study of the functioning of mirror neurons in normal conditions, in neurological and psychiatric diseases: a systematic review of the literature

Author information +
History +
PDF (585KB)

Abstract

The mirror neuron system is a fundamental brain system of the brain that provides the ability to understand the actions of others and plays a key role in motor learning and empathy. In this review, we have thoroughly examined the internal and external factors that influence the functioning of the mirror neuron system. Issues such as difficulties in interpreting the mu rhythm and its relationship to theory of mind, which are particularly salient when analysing the mirror neuron system in the context of mental illness, have been identified. The role of the mirror neuron system in the formation of various mental disorders and neurological diseases has been considered. Additionally, a promising direction for future research is highlighted — the study of the mirror neuron system in the context of Parkinson's disease, focusing on the peculiarities of the functioning of the dopaminergic system of the mirror neuron system under normal conditions and in the presence of pathology. Prospective directions for further research are suggested, including the analysis of the mu-rhythm, the role of mentalization, studying the mirror neuron system in mental and neurological diseases.

Keywords

mirror neurons / neuropsychiatric states / motor learning / empathy / mu-rhythm / theory of mind / mental disorders / neurological diseases / Parkinson's disease / transcranial magnetic stimulation

Cite this article

Download citation ▾
Aynur A. Ragimova, Gleb S. Perevoznyuk, Beatrice A. Volel, Dmitry S. Petelin, Daria S. Ponomareva, Mikhail I. Salamatin, Artyom A. Batov, Matteo Feurra. Study of the functioning of mirror neurons in normal conditions, in neurological and psychiatric diseases: a systematic review of the literature. Neurology Bulletin, 2024, LVI(3): 272-289 DOI:10.17816/nb632494

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Häusser LF. Empathie und Spiegelneurone. Praxis der Kinderpsychologie und Kinderpsychiatrie. 2012;61(5):322–335. (In German.) doi: 10.13109/prkk.2012.61.5.322

[2]

Häusser L.F. Empathie und Spiegelneurone // Praxis Kinderpsychol Kinderpsychiatr. 2012. Vol. 61, N 5. P. 322–335. doi: 10.13109/prkk.2012.61.5.322

[3]

Kosonogov V. Mirror neurons: A brief scientific review. Rostov-on-Don: Antey; 2009. 22 p. (In Russ.) EDN: QKSJRJ

[4]

Косоногов В. Зеркальные нейроны: краткий научный обзор. Ростов-на-Дону: Антей, 2009. 22 c. EDN: QKSJRJ

[5]

Lebedeva NN, Zufman AI, Maltsev VY. The brain's mirror neuron system: A key to learning, personality formation, and understanding others' consciousness. Progress in Physiological Science. 2017;48(4):16–28. (In Russ.) EDN: ZMRGRH

[6]

Лебедева Н.Н., Зуфман А.И., Мальцев В.Ю. Система зеркальных нейронов мозга: ключ к обучению, формированию личности и пониманию чужого сознания // Успехи физиологических наук. 2017. Т. 48, № 4. С. 16–28. EDN: ZMRGRH

[7]

Bushov YV, Ushakov V, Svetlik MV, et al. Activity of mirror neurons in man in the observation, pronunciation and mental pronunciation of words. Procedia Computer Science. 2020;169:100–109. doi: 10.1016/j.procs.2020.02.121

[8]

Bushov Y.V., Ushakov V., Svetlik M.V., et al. Activity of mirror neurons in man in the observation, pronunciation and mental pronunciation of words // Procedia Computer Science. 2020. Vol. 169. P. 100–109. doi: 10.1016/j.procs.2020.02.121

[9]

Bushov YV, Ushakov V, Svetlik MV, et al. The role of mirror neurons in the interpretation of actions and intentions. Tomsk State University Journal of Biology. 2021;56:86–107. (In Russ.) EDN: FCQOHZ doi: 10.17223/19988591/56/4

[10]

Бушов Ю.В., Ушаков В., Светлик М.В., и др. Роль зеркальных нейронов в интерпретации действий и намерений // Вестник Томского государственного университета. 2021. Т. 56. С. 86–107. EDN: FCQOHZ doi: 10.17223/19988591/56/4

[11]

Skryabina AA, Bushov YV. Mirror neurons in the evol ution of language and in the formation of bilingualis. Psychophysiology News. 2022;2:12–24. (In Russ.) EDN: KXOEDG doi: 10.34985/c6091-9005-0623-t

[12]

Скрябина А.А., Бушов Ю.В. Зеркальные нейроны в эволюции языка и в формировании билингвизма // Вестник психофизиологии. 2022. № 2. С. 12–24. EDN: KXOEDG doi: 10.34985/c6091-9005-0623-t

[13]

Iacoboni M. Imitation, empathy, and mirror neurons. Annu Rev Psychol. 2009;60:653–670. doi: 10.1146/annurev.psych.60.110707.163604

[14]

Iacoboni M. Imitation, empathy, and mirror neurons // Annu Rev Psychol. 2009. Vol. 60. P. 653–670. doi: 10.1146/annurev.psych.60.110707.163604

[15]

Di Pellegrino G, Fadiga L, Fogassi L, et al. Understanding motor events: A neurophysiological study. Experimental Brain Research. 1992;91(1):176–180. doi: 10.1007/bf00230027

[16]

Di Pellegrino G., Fadiga L., Fogassi L., et al. Understanding motor events: A neurophysiological study // Experimental Brain Research. 1992. Vol. 91, N 1. P. 176–180. doi: 10.1007/bf00230027

[17]

Ferrari PF, Gallese V, Rizzolatti G, et al. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience. 2003;17(8):1703–1714. doi: 10.1046/j.1460-9568.2003.02601.x

[18]

Ferrari P.F., Gallese V., Rizzolatti G., et al. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex // European Journal of Neuroscience. 2003. Vol. 17, N 8. P. 1703–1714. doi: 10.1046/j.1460-9568.2003.02601.x

[19]

Bazyan AS. Mirror neurons, their physiological role, features of functioning, and an emotionally rich cognitive map of the brain. Progress In Physiological Science. 2019;50(2):42–62. (In Russ.) EDN: ZDMARV doi: 10.1134/s0301179819020061

[20]

Базян А.С. Зеркальные нейроны, физиологическая роль, особенности функционирования и эмоционально насыщенная когнитивная карта мозга // Успехи физиологических наук. 2019. Т. 50, № 2. С. 42–62. EDN: ZDMARV doi: 10.1134/s0301179819020061

[21]

Gallese V. Mirror neurons and the social nature of language: The neural exploitation hypothesis. Soc Neurosci. 2008;3(3–4):317–333. doi: 10.1080/17470910701563608.

[22]

Gallese V. Mirror neurons and the social nature of language: The neural exploitation hypothesis // Soc Neurosci. 2008. Vol. 3, N 3–4. P. 317–333. doi: 10.1080/17470910701563608

[23]

Rizzolatti G, Fadiga L, Matelli M, et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111(2):246–252. doi: 10.1007/bf00227301

[24]

Rizzolatti G., Fadiga L., Matelli M., et al. Localization of grasp representations in humans by PET: 1. Observation versus execution // Exp Brain Res. 1996. Vol. 111, N 2. Р. 246–252. doi: 10.1007/bf00227301

[25]

Fogassi L, Ferrari PF, Gesierich B, et al. Parietal lobe: From action organization to intention understanding. Science. 2005;308(5722):662–667. doi: 10.1126/science.1106138

[26]

Fogassi L., Ferrari P.F., Gesierich B., et al. Parietal lobe: From action organization to intention understanding // Science. 2005. Vol. 308, N 5722. P. 662–667. doi: 10.1126/science.1106138

[27]

Arbib MA, Billard A, Iacoboni M, et al. Synthetic brain imaging: Grasping, mirror neurons and imitation. Neural Netw. 2000;13(8–9):975–997. doi: 10.1016/s0893-6080(00)00070-8

[28]

Arbib M.A., Billard A., Iacoboni M., et al. Synthetic brain imaging: grasping, mirror neurons and imitation // Neural Netw. 2000. Vol. 13, N 8–9. P. 975–997. doi: 10.1016/s0893-6080(00)00070-8

[29]

Fox NA, Bakermans-Kranenburg MJ, Yoo KH, et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol Bull. 2016;142(3):291–313. doi: 10.1037/bul0000031

[30]

Fox N.A., Bakermans-Kranenburg M.J., Yoo K.H., et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis // Psychol Bull. 2016. Vol. 142, N 3. P. 291–313. doi: 10.1037/bul0000031

[31]

Makhin SA. The system of "mirror neurons": current achievements and prospects of EEG-research. Scientific notes of Vernadsky VI. Tauride National University. Series: biology, chemistry. 2012;25(1):142–146. (In Russ.) EDN: VEBCGP

[32]

Махин С.А. Система «зеркальных нейронов»: актуальные достижения и перспективы ЭЭГ-исследований // Ученые записки таврического национального университета имени В.И. Вернадского. Серия: биология, химия. 2012. Т. 25, № 1. С. 142–146. EDN: VEBCGP

[33]

Ragimova AA, Petelin DS, Zakharova NV, et al. The use of transcranial magnetic stimulation in psychiatric and psychoneurological practice: a teaching manual. Moscow: First Moscow State Medical University named after IM Sechenov (Sechenov University), Ministry of Health of the Russian Federation; 2022. 150 р. (In Russ.)

[34]

Рагимова А.А., Петелин Д.С., Захарова Н.В., и др. Применение транскраниальной магнитной стимуляции в психиатрической и психоневрологической практике. Учебно-методическое пособие. Москва: ФГАОУ ВО Первый МГМУ им. И.М. Сеченова (Сеченовский Университет) Минздрава РФ, 2022. 150 с.

[35]

Feurra M, Blagovechtchenski E, Nikulin VV, et al. State-dependent effects of transcranial oscillatory currents on the motor system during action observation. Scientific Reports. 2019;9(1):12858. doi: 10.1038/s41598-019-49166-1

[36]

Feurra M., Blagovechtchenski E., Nikulin V.V., et al. State-dependent effects of transcranial oscillatory currents on the motor system during action observation // Scientific Reports. 2019. Vol. 9. Р. 12858. doi: 10.1038/s41598-019-49166-1

[37]

Kayda AI, Eismont EV. Experimental methods of studying the human brain's mirror neuron system. In: II Interdisciplinary Scientific and Practical Conference of Young Scientists on Promising Directions in the Development of Modern Science “Academician Vernadsky”. 2016:30–32. (In Russ.) EDN: ZRVSUD

[38]

Кайда А.И., Эйсмонт Е.В. Экспериментальные методы изучения системы зеркальных нейронов мозга человека. В кн.: II Междисциплинарная научно-практическая конференция молодых учёных по перспективным направлениям развития современной науки «Академик Вернадский» в рамках проведения фестиваля «Дни науки КФУ им. В.И. Вернадского». 2016. С. 30–32. EDN: ZRVSUD

[39]

Kemmerer D, Rudrauf D, Manzel K, et al. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex. 2012;48(7):826–848. doi: 10.1016/j.cortex.2010.11.001

[40]

Kemmerer D., Rudrauf D., Manzel K., et al. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions // Cortex. 2012. Vol. 48, N 7. P. 826–848. doi: 10.1016/j.cortex.2010.11.001

[41]

Gastaut H, Bert J. EEG changes during cinematographic presentation (Moving picture activation of the EEG). Electroencephalography and Clinical Neurophysiology. 1954;6(3):433–444. doi: 10.1016/0013-4694(54)90058-9

[42]

Gastaut H., Bert J. EEG changes during cinematographic presentation (Moving picture activation of the EEG) // Electroencephalography and Clinical Neurophysiology. 1954. Vol. 6, N 3. P. 433–444. doi: 10.1016/0013-4694(54)90058-9

[43]

Tranel D, Kemmerer D, Adolphs R, et al. Neural correlates of conceptual knowledge for actions. Cogn Neuropsychol. 2003;20(3–6):409–432. doi: 10.1080/02643290244000248

[44]

Tranel D., Kemmerer D., Adolphs R., et al. Neural correlates of conceptual knowledge for actions // Cogn Neuropsychol. 2003. Vol. 20, N 3. P. 409–432. doi: 10.1080/02643290244000248

[45]

Tarhan L, Watson CE, Buxbaum LJ. Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: Evidence from 131 left-hemisphere stroke patients. J Cogn Neurosci. 2015;27(12):2491–2511. doi: 10.1162/jocn_a_00876

[46]

Tarhan L., Watson C.E., Buxbaum L.J. Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: Evidence from 131 left-hemisphere stroke patients // J Cogn Neurosci. 2015. Vol. 27, N 12. P. 2491–2511. doi: 10.1162/jocn_a_00876

[47]

Rossini PM. Corticospinal excitability modulation to hand muscles during movement imagery. Cerebral Cortex. 1999;9(2):161–167. doi: 10.1093/cercor/9.2.161

[48]

Rossini P.M. Corticospinal excitability modulation to hand muscles during movement imagery // Cerebral Cortex. 1999. Vol. 9, N 2. P. 161–167. doi: 10.1093/cercor/9.2.161

[49]

Barbieri C, De Renzi E. The executive and ideational components of Apraxia. Cortex. 1988;24(4):535–543. doi: 10.1016/s0010-9452(88)80047-9

[50]

Barbieri C., De Renzi E. The executive and ideational components of Apraxia // Cortex. 1988. Vol. 24, N 4. P. 535–543. doi: 10.1016/s0010-9452(88)80047-9

[51]

Buccino G, Binkofski F, Riggio L. The mirror neuron system and action recognition. Brain Lang. 2004;89(2):370–376. doi: 10.1016/s0093-934x(03)00356-0

[52]

Buccino G., Binkofski F., Riggio L. The mirror neuron system and action recognition // Brain Lang. 2004. Vol. 89, N 2. P. 370–376. doi: 10.1016/s0093-934x(03)00356-0

[53]

Takahashi H, Shibuya T, Kato M, et al. Enhanced activation in the extrastriate body area by goal-directed actions. Psychiatry Clin Neurosci. 2008;62(2):214–219. doi: 10.1111/j.1440-1819.2008.01757.x

[54]

Takahashi H., Shibuya T., Kato M., et al. Enhanced activation in the extrastriate body area by goal-directed actions // Psychiatry Clin Neurosci. 2008. Vol. 62, N 2. P. 214–219. doi: 10.1111/j.1440-1819.2008.01757.x

[55]

Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage. 2009;48(3):564–584. doi: 10.1016/j.neuroimage.2009.06.009

[56]

Van Overwalle F., Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis // Neuroimage. 2009. Vol. 48, N 3. P. 564–584. doi: 10.1016/j.neuroimage.2009.06.009

[57]

Brunsdon VE, Bradford EE, Smith L, et al. Short-term physical training enhances mirror system activation to action observation. Soc Neurosci. 2019;15(1):98–107. doi: 10.1080/17470919.2019.1660708

[58]

Brunsdon V.E., Bradford E.E., Smith L., et al. Short-term physical training enhances mirror system activation to action observation // Soc Neurosci. 2019. Vol. 15, N 1. P. 98–107. doi: 10.1080/17470919.2019.1660708

[59]

Barchiesi G, Cattaneo L. Early and late motor responses to action observation. Soc Cogn Affect Neurosci. 2012;8(6):711–719. doi: 10.1093/scan/nss049

[60]

Barchiesi G., Cattaneo L. Early and late motor responses to action observation // Soc Cogn Affect Neurosci. 2012. Vol. 8, N 6. P. 711–719. doi: 10.1093/scan/nss049

[61]

Catmur C, Thompson E, Bairaktari O, et al. Sensorimotor training alters action understanding. Cognition. 2018;171:10–14. doi: 10.1016/j.cognition.2017.10.024

[62]

Catmur C., Thompson E., Bairaktari O., et al. Sensorimotor training alters action understanding // Cognition. 2018. Vol. 171. P. 10–14. doi: 10.1016/j.cognition.2017.10.024

[63]

Bianco G, Feurra M, Fadiga L, et al. Bi-hemispheric effects on corticospinal excitability induced by repeated sessions of imagery versus observation of actions. Restor Neurol Neurosci. 2012;30(6):481–489. doi: 10.3233/rnn-2012-120241

[64]

Bianco G., Feurra M., Fadiga L., et al. Bi-hemispheric effects on corticospinal excitability induced by repeated sessions of imagery versus observation of actions // Restor Neurol Neurosci. 2012. Vol. 30, N 6. P. 481–489. doi: 10.3233/rnn-2012-120241

[65]

Catmur C, Mars RB, Rushworth MF, et al. Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. J Cogn Neurosci. 2011;23(9):2352–2362. doi: 10.1162/jocn.2010.21590

[66]

Catmur C., Mars R.B., Rushworth M.F., et al. Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation // J Cogn Neurosci. 2011. Vol. 23, N 9. P. 2352–2362. doi: 10.1162/jocn.2010.21590

[67]

Taschereau-Dumouchel V, Hétu S, Michon P, et al. BDNF Val66MET polymorphism influences visuomotor associative learning and the sensitivity to action observation. Sci Rep. 2016;6(1):34907. doi: 10.1038/srep34907

[68]

Taschereau-Dumouchel V., Hétu S., Michon P., et al. BDNF Val66MET polymorphism influences visuomotor associative learning and the sensitivity to action observation // Sci Rep. 2016. Vol. 6, N 1. P. 34907. doi: 10.1038/srep34907

[69]

Errante A, Fogassi L. Activation of cerebellum and basal ganglia during the observation and execution of manipulative actions. Scientific Reports. 2020;10(1):12008. doi: 10.1038/s41598-020-68928-w

[70]

Errante A., Fogassi L. Activation of cerebellum and basal ganglia during the observation and execution of manipulative actions // Sci Rep. 2020. Vol. 10, N 1. Р. 12008. doi: 10.1038/s41598-020-68928-w

[71]

Nieto-Doval K, Ragimova AA, Feurra M. The influence of visual presentation of hand finger movements on motor response induced by transcranial magnetic stimulation. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni IP Pavlova. 2023;73(3):334–347. (In Russ.) EDN: TTOQDZ doi: 10.31857/S0044467723030115

[72]

Ньето-Доваль К., Рагимова А.А., Феурра М. Влияние зрительного предъявления движений пальцев руки на моторный ответ, вызванный транскраниальной магнитной стимуляцией // Журнал высшей нервной деятельности им. И.П. Павлова. 2023. Т. 73, № 3. С. 334–347. EDN: TTOQDZ doi: 10.31857/S0044467723030115

[73]

Krol M, Jellema T. Sensorimotor anticipation of others’ actions in real-world and video settings: Modulation by level of engagement? Soc Neurosci. 2022;17(3):293–304. doi: 10.1080/17470919.2022.2083229

[74]

Krol M., Jellema T. Sensorimotor anticipation of others’ actions in real-world and video settings: Modulation by level of engagement? // Soc Neurosci. 2022. Vol. 17, N 3. P. 293–304. doi: 10.1080/17470919.2022.2083229

[75]

Pineda JO, Oberman LM. What goads cigarette smokers to smoke? Neural adaptation and the mirror neuron system. Brain Res. 2006;1121(1):128–135. doi: 10.1016/j.brainres.2006.08.128

[76]

Pineda J.O., Oberman L.M. What goads cigarette smokers to smoke? Neural adaptation and the mirror neuron system // Brain Res. 2006. Vol. 1121, N 1. P. 128–135. doi: 10.1016/j.brainres.2006.08.128

[77]

Heyes C. Empathy is not in our genes. Neurosci Biobehav Rev. 2018;95:499–507. doi: 10.1016/j.neubiorev.2018.11.001

[78]

Heyes C. Empathy is not in our genes // Neurosci Biobehav Rev. 2018. Vol. 95. P. 499–507. doi: 10.1016/j.neubiorev.2018.11.001

[79]

Meza-Concha N, Arancibia M, Salas F, et al. Towards a neurobiological understanding of alexithymia. Medwave. 2017;17(4):e6960. doi: 10.5867/medwave.2017.04.6960

[80]

Meza-Concha N., Arancibia M., Salas F., et al. Towards a neurobiological understanding of alexithymia // Medwave. 2017. Vol. 17, N 4. Р. e6960. doi: 10.5867/medwave.2017.04.6960

[81]

Ripoll LH, Snyder R, Steele H, Siever LJ. The neurobiology of empathy in borderline personality disorder. Curr Psychiatry Rep. 2013;15(3):344. doi: 10.1007/s11920-012-0344-1

[82]

Ripoll L.H., Snyder R., Steele H., Siever L.J. The neurobiology of empathy in borderline personality disorder // Curr Psychiatry Rep. 2013. Vol. 15, N 3. P. 344. doi: 10.1007/s11920-012-0344-1

[83]

Guessoum SB, Strat YL, Dubertret C, et al. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109862. doi: 10.1016/j.pnpbp.2020.109862

[84]

Guessoum S.B., Strat Y.L., Dubertret C., et al. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders // Prog Neuropsychopharmacol Biol Psychiatry. 2020. Vol. 99. P. 109862. doi: 10.1016/j.pnpbp.2020.109862

[85]

Smith DJ, Whitham EA, Ghaemi SN. Bipolar disorder. Handb Clin Neurol. 2012;106:251–263. doi: 10.1016/b978-0-444-52002-9.00015-2

[86]

Smith D.J., Whitham E.A., Ghaemi S.N. Bipolar disorder // Handb Clin Neurol. 2012. Vol. 106. P. 251–263. doi: 10.1016/b978-0-444-52002-9.00015-2

[87]

Lebedeva NN, Karimova ED, Burkutbaev SE, et al. Research methods of mirror neurons in patients with affective disorders. In: Proceedings of the All-Russian school-seminar “Computerized diagnostic methods in biology and medicine – 2018”. Saratov, 2018 Oct 01. Saratov National Research State University named after NG Chernyshevsky. 2018:114–117. (In Russ.) EDN: VKZIQE

[88]

Лебедева Н.Н., Каримова Е.Д., Буркитбаев С.Е., и др. Методы исследования зеркальных нейронов у больных с аффективными расстройствами В кн.: Методы компьютерной диагностики в биологии и медицине – 2018. Сборник статей. Саратов, 01 октября 2018. Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского. 2018. С. 114–117. EDN: VKZIQE

[89]

Andrews SC, Enticott PG, Hoy KE, et al. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system? Soc Neurosci. 2015;11(1):60–71. doi: 10.1080/17470919.2015.1029140

[90]

Andrews S.C., Enticott P.G., Hoy K.E., et al. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system? // Soc Neurosci. 2015. Vol. 11, N 1. P. 60–71. doi: 10.1080/17470919.2015.1029140

[91]

Basavaraju R, Mehta UM, Pascual-Leone Á, et al. Elevated mirror neuron system activity in bipolar mania: Evidence from a transcranial magnetic stimulation study. Bipolar Disord. 2018;21(3):259–269. doi: 10.1111/bdi.12723

[92]

Basavaraju R., Mehta U.M., Pascual-Leone Á., et al. Elevated mirror neuron system activity in bipolar mania: Evidence from a transcranial magnetic stimulation study // Bipolar Disord. 2018. Vol. 21, N 3. P. 259–269. doi: 10.1111/bdi.12723

[93]

Canali P, Casarotto S, Rosanova M, et al. Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry. 2017;41:10–15. doi: 10.1016/j.eurpsy.2016.10.005

[94]

Canali P., Casarotto S., Rosanova M., et al. Abnormal brain oscillations persist after recovery from bipolar depression // Eur Psychiatry. 2017. Vol. 41. P. 10–15. doi: 10.1016/j.eurpsy.2016.10.005

[95]

Cao K, Ma M, Wang C, et al. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology. 2021;197:108574. doi: 10.1016/j.neuropharm.2021.108574

[96]

Cao K., Ma M., Wang C., et al. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders // Neuropharmacology. 2021. Vol. 197. P. 108574. doi: 10.1016/j.neuropharm.2021.108574

[97]

Chrobak AA, Rybakowski J, Abramowicz M, et al. Vergence eye movements in bipolar disorder. Psychiatr Pol. 2020;54(3):467–485. doi: 10.12740/pp/onlinefirst/105229

[98]

Chrobak A.A., Rybakowski J., Abramowicz M., et al. Vergence eye movements in bipolar disorder // Psychiatr Pol. 2020. Vol. 54, N 3. P. 467–485. doi: 10.12740/pp/onlinefirst/105229

[99]

Shmukler AB. Schizophrenia: A separate nosological unit or a group of diseases? Social and Clinical Psychiatry. 2021;31(4):103–107. (In Russ.) EDN: CQGBMJ

[100]

Шмуклер А.Б. Шизофрения: отдельная нозологическая единица или группа заболеваний? // Социальная и клиническая психиатрия. 2021. Т. 31, № 4. С. 103–107. EDN: CQGBMJ

[101]

Lee JS, Chun JW, Yoon SD, et al. Involvement of the mirror neuron system in blunted affect in schizophrenia. Schizophr Res. 2014;152(1):268–274. doi: 10.1016/j.schres.2013.10.043

[102]

Lee J.S., Chun J.W., Yoon S.D., et al. Involvement of the mirror neuron system in blunted affect in schizophrenia // Schizophr Res. 2014. Vol. 152, N 1. P. 268–274. doi: 10.1016/j.schres.2013.10.043

[103]

Saito Y, Kubicki M, Koerte I, et al. Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav. 2018;12(1):229–237. doi: 10.1007/s11682-017-9685-z

[104]

Saito Y., Kubicki M., Koerte I., et al. Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia // Brain Imaging Behav. 2018. Vol. 12, N 1. P. 229–237. doi: 10.1007/s11682-017-9685-z

[105]

Mitra S, Nizamie SH, Goyal N, et al. Event related desynchronisation of mu-wave over right sensorimotor cortex at baseline may predict subsequent response to antipsychotics in Schizophrenia. Asian J Psychiatr. 2015;14:19–21. doi: 10.1016/j.ajp.2015.01.013

[106]

Mitra S., Nizamie S.H., Goyal N., et al. Event related desynchronisation of mu-wave over right sensorimotor cortex at baseline may predict subsequent response to antipsychotics in Schizophrenia // Asian J Psychiatr. 2015. Vol. 14. P. 19–21. doi: 10.1016/j.ajp.2015.01.013

[107]

Horan WP, Pineda JA, Wynn JK, et al. Some markers of mirroring appear intact in schizophrenia: Evidence from mu suppression. Cogn Affect Behav Neurosci. 2014;14(3):1049–1060. doi: 10.3758/s13415-013-0245-8

[108]

Horan W.P., Pineda J.A., Wynn J.K., et al. Some markers of mirroring appear intact in schizophrenia: Evidence from mu suppression // Cogn Affect Behav Neurosci. 2014. Vol. 14, N 3. P. 1049–1060. doi: 10.3758/s13415-013-0245-8

[109]

Brown EB, Gonzalez-Liencres C, Taş C, et al. Reward modulates the mirror neuron system in schizophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution. Soc Neurosci. 2016;11(2):175–186. doi: 10.1080/17470919.2015.1053982

[110]

Brown E.B., Gonzalez-Liencres C., Taş C., et al. Reward modulates the mirror neuron system in schizophrenia: A study into the mu rhythm suppression, empathy, and mental state attribution // Soc Neurosci. 2016. Vol. 11, N 2. P. 175–186. doi: 10.1080/17470919.2015.1053982

[111]

Jalal B, Ramachandran VS. “I feel your disgust and relief”: Can the action understanding system (mirror neuron system) be recruited to induce disgust and relief from contamination vicariously, in individuals with obsessive-compulsive disorder symptoms? Neurocase. 2017;23(1):31–35. doi: 10.1080/13554794.2017.1279638

[112]

Jalal B., Ramachandran V.S. “I feel your disgust and relief”: Can the action understanding system (mirror neuron system) be recruited to induce disgust and relief from contamination vicariously, in individuals with obsessive-compulsive disorder symptoms? // Neurocase. 2017. Vol. 23, N 1. P. 31–35. doi: 10.1080/13554794.2017.1279638

[113]

Khalil R, Tindle R, Boraud T, et al. Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci Ther. 2018;24(8):669–676. doi: 10.1111/cns.13001

[114]

Khalil R., Tindle R., Boraud T., et al. Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors // CNS Neurosci Ther. 2018. Vol. 24, N 8. P. 669–676. doi: 10.1111/cns.13001

[115]

Bibicheva AA, Moskvitina IE, Rykova MS, Zubkova TD. Development of empathy in children with autism spectrum disorder on the example of mirror neurons. Ratio et Natura. 2022;2:28. (In Russ.) EDN: HLAQQD

[116]

Бибичева А.А., Москвитина И.Е., Рыкова М.С., Зубкова Т.Д. Развитие эмпатии у детей с расстройством аутистического спектра на примере зеркальных нейронов // Ratio et Natura. 2022. № 2. С. 28. EDN: HLAQQD

[117]

Oberman LM, Hubbard EM, McCleery JP, et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res. 2005;24(2):190–198. doi: 10.1016/j.cogbrainres.2005.01.014

[118]

Oberman L.M., Hubbard E.M., McCleery J.P., et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders // Brain Res Cogn Brain Res. 2005. Vol. 24, N 2. P. 190–198. doi: 10.1016/j.cogbrainres.2005.01.014

[119]

Enticott PG, Kennedy HA, Rinehart N, et al. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biol Psychiatry. 2012;71(5):427–433. doi: 10.1016/j.biopsych.2011.09.001

[120]

Enticott P.G., Kennedy H.A., Rinehart N., et al. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder // Biol Psychiatry. 2012. Vol. 71. P. 427–433. doi: 10.1016/j.biopsych.2011.09.001

[121]

Enticott PG, Kennedy HA, Rinehart N, et al. Interpersonal motor resonance in autism spectrum disorder: Evidence against a global “mirror system” deficit. Front Hum Neurosci. 2013;7:218. doi: 10.3389/fnhum.2013.00218

[122]

Enticott P.G., Kennedy H.A., Rinehart N., et al. Interpersonal motor resonance in autism spectrum disorder: Evidence against a global “mirror system” deficit // Front Hum Neurosci. 2013. Vol. 7. P. 218. doi: 10.3389/fnhum.2013.00218

[123]

Heyes C, Catmur C. What happened to mirror neurons? Perspect Psychol Sci. 2022;17(1):153–168. doi: 10.1177/1745691621990638

[124]

Heyes C., Catmur C. What happened to mirror neurons? // Perspect Psychol Sci. 2022. Vol. 17, N 1. P. 153–168. doi: 10.1177/1745691621990638

[125]

Chan MM, Han YM. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: A meta-analysis of neuroimaging studies. Mol Autism. 2020;11(1):72. doi: 10.1186/s13229-020-00374-x

[126]

Chan M.M., Han Y.M. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: A meta-analysis of neuroimaging studies // Mol Autism. 2020. Vol. 11, N 1. P. 72. doi: 10.1186/s13229-020-00374-x

[127]

Leichsenring F, Heim N, Leweke F, et al. Borderline personality disorder: A review. JAMA. 2023;329(8):670–679. doi: 10.1001/jama.2023.0589

[128]

Leichsenring F., Heim N., Leweke F., et al. Borderline personality disorder: A review // JAMA. 2023. Vol. 329, N 8. P. 670–679. doi: 10.1001/jama.2023.0589

[129]

Sosic-Vasic Z, Eberhardt J, Bosch J, et al. Mirror neuron activations in encoding of psychic pain in borderline personality disorder. NeuroImage: Clinical. 2019;22:101737. doi: 10.1016/j.nicl.2019.101737

[130]

Sosic-Vasic Z., Eberhardt J., Bosch J., et al. Mirror neuron activations in encoding of psychic pain in borderline personality disorder // NeuroImage: Clinical. 2019. Vol. 22. P. 101737. doi: 10.1016/j.nicl.2019.101737

[131]

Minzenberg M, Fan J, New AS, et al. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: An event-related fMRI study. Psychiatry Res. 2007;155(3):231–243. doi: 10.1016/j.pscychresns.2007.03.006

[132]

Minzenberg M., Fan J., New A.S., et al. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: An event-related fMRI study // Psychiatry Res. 2007. Vol. 155, N 3. P. 231–243. doi: 10.1016/j.pscychresns.2007.03.006

[133]

Frith CD. The social brain? Philos Trans R Soc Lond B Biol Sci. 2007;362(1480):671–678. doi: 10.1098/rstb.2006.2003

[134]

Frith C.D. The social brain? // Philos Trans R Soc Lond B Biol Sci. 2007. Vol. 362, N 1480. P. 671–678. doi: 10.1098/rstb.2006.2003

[135]

Singer T, Seymour B, O’Doherty JP, et al. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–1162. doi: 10.1126/science.1093535

[136]

Singer T., Seymour B., O’Doherty J.P., et al. Empathy for pain involves the affective but not sensory components of pain // Science. 2004. Vol. 303, N 5661. P. 1157–1162. doi: 10.1126/science.1093535

[137]

Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century. Stroke. 2013;44(7):2064–2089. doi: 10.1161/str.0b013e318296aeca

[138]

Sacco R.L., Kasner S.E., Broderick J.P., et al. An updated definition of stroke for the 21st century // Stroke. 2013. Vol. 44, N 7. P. 2064–2089. doi: 10.1161/str.0b013e318296aeca

[139]

Heilman K., Velnstein E. Clinical neuropsychology. New York: Oxford University Press; 1979. 644 p. [cited 2023 April 05] Available from: https://archive.org/details/clinicalneuropsy00heil

[140]

Heilman K., Vallenstein E. Clinical neuropsychology. New York: Oxford University Press, 1979. 644 p. Режим доступа: https://archive.org/details/clinicalneuropsy00heil Дата обращения: 05.04.2024.

[141]

Buxbaum LJ, Kyle KM, Menon R. On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Brain Res Cogn Brain Res. 2005;25(1):226–239. doi: 10.1016/j.cogbrainres.2005.05.014

[142]

Buxbaum L.J., Kyle K.M., Menon R. On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans // Brain Res Cogn Brain Res. 2005. Vol. 25, N 1. P. 226–239. doi: 10.1016/j.cogbrainres.2005.05.014

[143]

Kalénine S, Buxbaum LJ, Coslett HB. Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain. 2010;133(11):3269–3280. doi: 10.1093/brain/awq210

[144]

Kalénine S., Buxbaum L.J., Coslett H.B. Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke // Brain. 2010. Vol. 133, N 11. P. 3269–3280. doi: 10.1093/brain/awq210

[145]

Binder EF, Dovern A, Hesse MD, et al. Lesion evidence for a human mirror neuron system. Cortex. 2017;90:125–137. doi: 10.1016/j.cortex.2017.02.008

[146]

Binder E.F., Dovern A., Hesse M.D., et al. Lesion evidence for a human mirror neuron system // Cortex. 2017. Vol. 90. P. 125–137. doi: 10.1016/j.cortex.2017.02.008

[147]

Eggermont L, Swaab DF, Hol EM, Scherder E. Observation of hand movements by older persons with dementia: Effects on cognition. Dement Geriatr Cogn Disord. 2009;27(4):366–374. doi: 10.1159/000209311

[148]

Eggermont L., Swaab D.F., Hol E.M., Scherder E. Observation of hand movements by older persons with dementia: Effects on cognition // Dement Geriatr Cogn Disord. 2009. Vol. 27, N 4. P. 366–374. doi: 10.1159/000209311

[149]

Marco-Garcia S, Ferrer-Quintero M, Usall J, et al. Facial emotion recognition in neurological disorders: A narrative review. Reconocimiento facial de emociones en trastornos neurologicos: Una revision narrativa. Rev Neurol. 2019;69(5):207–219. doi: 10.33588/rn.6905.2019047

[150]

Marco-Garcia S., Ferrer-Quintero M., Usall J., et al. Facial emotion recognition in neurological disorders: A narrative review. Reconocimiento facial de emociones en trastornos neurologicos: Una revision narrative // Rev Neurol. 2019. Vol. 69, N 5. P. 207–219. doi: 10.33588/rn.6905.2019047

[151]

De Stefani E, Nicolini Y, Belluardo M, et al. Congenital facial palsy and emotion processing: The case of Moebius syndrome. Genes Brain Behav. 2019;18(1):e12548. doi: 10.1111/gbb.12548

[152]

De Stefani E., Nicolini Y., Belluardo M., et al. Congenital facial palsy and emotion processing: The case of Moebius syndrome // Genes Brain Behav. 2019. Vol. 18, N 1. Р. e12548. doi: 10.1111/gbb.12548

[153]

Nicolini Y, Manini B, De Stefani E, et al. Autonomic responses to emotional stimuli in children affected by facial palsy: The case of Moebius syndrome. Neural Plast. 2019;2019: 7253768. doi: 10.1155/2019/7253768

[154]

Nicolini Y., Manini B., De Stefani E., et al. Autonomic responses to emotional stimuli in children affected by facial palsy: The case of Moebius syndrome // Neural Plast. 2019. Vol. 2019. P. 7253768. doi: 10.1155/2019/7253768

[155]

Plata-Bello J. The study of action observation therapy in neurological diseases: A few technical considerations. InTech eBooks. 2017. doi: 10.5772/67651

[156]

Plata-Bello J. The study of action observation therapy in neurological diseases: A few technical considerations // InTech eBooks. 2017. doi: 10.5772/67651

[157]

Kim K. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials. J Phys Ther Sci. 2015;27(10):3315–3317. doi: 10.1589/jpts.27.3315

[158]

Kim K. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials // J Phys Ther Sci. 2015. Vol. 27, N 10. P. 3315–3317. doi: 10.1589/jpts.27.3315

[159]

Sale P, Ceravolo MG, Franceschini M. Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients. Biomed Res Int. 2014;2014:457538. doi: 10.1155/2014/457538

[160]

Sale P., Ceravolo M.G., Franceschini M. Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients // Biomed Res Int. 2014. Vol. 2014. P. 457538. doi: 10.1155/2014/457538

[161]

Celnik P, Webster B, Glasser DM, Cohen LG. Effects of action observation on physical training after stroke. Stroke. 2008;39(6):1814–1820. doi: 10.1161/strokeaha.107.508184

[162]

Celnik P., Webster B., Glasser D.M., Cohen L.G. Effects of action observation on physical training after stroke // Stroke. 2008. Vol. 39, N 6. P. 1814–1820. doi: 10.1161/strokeaha.107.508184

[163]

Bhasin A, Srivastava MP, Kumaran S, et al. Neural interface of mirror therapy in chronic stroke patients: A functional magnetic resonance imaging study. Neurol India. 2012;60(6):570. doi: 10.4103/0028-3886.105188

[164]

Bhasin A., Srivastava M.P., Kumaran S., et al. Neural interface of mirror therapy in chronic stroke patients: A functional magnetic resonance imaging study // Neurol India. 2012. Vol. 60, N 6. P. 570–576. doi: 10.4103/0028-3886.105188

[165]

Michielsen ME, Selles RW, Van Der Geest JN, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients. Neurorehabil Neural Repair. 2010;25(3):223–233. doi: 10.1177/1545968310385127

[166]

Michielsen M.E., Selles R.W., Van Der Geest J.N., et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients // Neurorehabil Neural Repair. 2010. Vol. 25, N 3. P. 223–233. doi: 10.1177/1545968310385127

[167]

Jaywant A, Ellis TD, Roy SH, et al. Randomized controlled trial of a Home-Based Action Observation intervention to improve walking in Parkinson disease. Arch Phys Med Rehabil. 2016;97(5):665–673. doi: 10.1016/j.apmr.2015.12.029

[168]

Jaywant A., Ellis T.D., Roy S.H., et al. Randomized controlled trial of a Home-Based Action Observation intervention to improve walking in Parkinson disease // Arch Phys Med Rehabil. 2016. Vol. 97, N 5. P. 665–673. doi: 10.1016/j.apmr.2015.12.029

[169]

Pelosin E, Avanzino L, Bove M, et al. Action observation improves freezing of GAIT in patients with Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(8):746–752. doi: 10.1177/1545968310368685

[170]

Pelosin E., Avanzino L., Bove M., et al. Action observation improves freezing of GAIT in patients with Parkinson’s disease // Neurorehabil Neural Repair. 2010. Vol. 24, N 8. P. 746–752. doi: 10.1177/1545968310368685

[171]

Pelosin E, Bove M, Ruggeri P, et al. Reduction of bradykinesia of finger movements by a single session of action observation in Parkinson disease. Neurorehabil Neural Repair. 2013;27(6):552–560. doi: 10.1177/1545968312471905

[172]

Pelosin E., Bove M., Ruggeri P., et al. Reduction of bradykinesia of finger movements by a single session of action observation in Parkinson disease // Neurorehabil Neural Repair. 2013. Vol. 27, N 6. P. 552–560. doi: 10.1177/1545968312471905

[173]

Bek J, Gowen E, Vogt S, et al. Observation and imitation of object-directed hand movements in Parkinson’s disease. Sci Rep. 2023;13(1):18749. doi: 10.1038/s41598-023-42705-x

[174]

Bek J., Gowen E., Vogt S., et al. Observation and imitation of object-directed hand movements in Parkinson’s disease // Sci Rep. 2023. Vol. 13, N 1. P. 18749. doi: 10.1038/s41598-023-42705-x

[175]

Buccino G, Arisi D, Gough PM, et al. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy. Dev Med Child Neurol. 2012;54(9):822–828. doi: 10.1111/j.1469-8749.2012.04334.x

[176]

Buccino G., Arisi D., Gough P.M., et al. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy // Dev Med Child Neurol. 2012. Vol. 54, N 9. P. 822–828. doi: 10.1111/j.1469-8749.2012.04334.x

[177]

Tekkuş B, Mutluay F. Effect of community-based group exercises combined with action observation on physical and cognitive performance in older adults during the COVID-19 pandemic: A randomized controlled trial. PLoS One. 2023;18(12):e0295057. doi: 10.1371/journal.pone.0295057

[178]

Tekkuş B., Mutluay F. Effect of community-based group exercises combined with action observation on physical and cognitive performance in older adults during the COVID-19 pandemic: A randomized controlled trial // PLoS One. 2023. Vol. 18, N 12. Р. e0295057. doi: 10.1371/journal.pone.0295057

[179]

Shaker H, Fahmy EM, Honin A, Shaheen S. Effect of mirror therapy on hand functions in Egyptian chronic stroke patients. The Egyptian Journal of Neurology Psychiatry and Neurosurgery. 2020;56(1):96. doi: 10.1186/s41983-020-00226-8

[180]

Shaker H., Fahmy E.M., Honin A., Shaheen S. Effect of mirror therapy on hand functions in Egyptian chronic stroke patients // The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2020. Vol. 56, N 1. Р. 96. doi: 10.1186/s41983-020-00226-8

[181]

Thieme H, Morkisch N, Mehrholz J, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7(7):CD008449. doi: 10.1002/14651858.cd008449.pub3

[182]

Thieme H., Morkisch N., Mehrholz J., et al. Mirror therapy for improving motor function after stroke // Cochrane Database Syst Rev. 2018. Vol. 7, N 7. Р. CD008449. doi: 10.1002/14651858.cd008449.pub3

[183]

Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–386. doi: 10.1098/rspb.1996.0058

[184]

Ramachandran V.S., Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors // Proc Biol Sci. 1996. Vol. 263, N 1369. P. 377–386. doi: 10.1098/rspb.1996.0058

[185]

Hobson H, Bishop DV. The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. R Soc Open Sci. 2017;4(3):160662. doi: 10.1098/rsos.160662

[186]

Hobson H., Bishop D.V. The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future // R Soc Open Sci. 2017. Vol. 4, N 3. P. 160662. doi: 10.1098/rsos.160662

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (585KB)

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/