Umbilical cord blood stem cells: transplantation prospects in neurological practice
Ilnaz M. Gazizov , Andrey A. Izmailov , Elmira A. Elagina , Zufar Z. Safiullov
Neurology Bulletin ›› 2024, Vol. LVI ›› Issue (2) : 181 -196.
Umbilical cord blood stem cells: transplantation prospects in neurological practice
Umbilical cord blood has evolved from being considered a mere cellular/tissue waste product after childbirth to a valuable biological material with a wide regenerative potential. Today, hematopoietic cord blood stem cells are used in the same way as bone marrow and mobilised peripheral blood as part of the standard medical treatment for haemoblastoses and hereditary blood diseases. There is an increasing amount of experimental data showing possibility of umbilical cord blood cell fractions using for treatment of non-hematological diseases and, in particular, diseases of the central nervous system. One of the key challenges in cell therapy for central nervous system diseases is the choice of cellular material for neurotransplantation. This is particularly relevant for ischemic and traumatic injuries, as well as neurodegenerative diseases. Stem or mature somatic cells prepared for neurotransplantation should have predictable and reproducible characteristics thataccording therapeutic purposes, exactly: trophic and/or neuroprotective action to increase neurons viability in damaged area; axon growth stimulation and myelination; cell matrix restoration or predictable differentiation direction to replace amount of lost brain or spinal cord cells. The fact that umbilical cord blood contains not only hematopoietic, but also various non-hematopoietic stem cells with a wide regenerative potential has become the basis for active use of these cells for neurotransplantation. The proposed review provides historical information about umbilical cord blood introduction into practical medicine, its cellular composition and clinical applications of stem cells various types for children central nervous system diseases treatment, such as ischemic encephalopathy, stroke, cerebral hemorrhage, cerebral palsy, autism, and in adults — for stroke treatment, spinal cord injury and neurodegenerative diseases.
umbilical cord blood / stem cells / transplantation / central nervous system diseases
| [1] |
Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43:357–361. |
| [2] |
Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood // Blood. 1974. Vol. 43. P. 357–361. |
| [3] |
Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324–1332. doi: 10.1172/jci110734 |
| [4] |
Nakahata T., Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors // J Clin Invest. 1982. Vol. 70. P. 1324–1332. doi: 10.1172/jci110734 |
| [5] |
Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828–3832. doi: 10.1073/pnas.86.10.3828 |
| [6] |
Broxmeyer H.E., Douglas G.W., Hangoc G., et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells // Proc Natl Acad Sci USA. 1989. Vol. 86. P. 3828–3832. doi: 10.1073/pnas.86.10.3828 |
| [7] |
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–1178. doi: 10.1056/NEJM198910263211707 |
| [8] |
Gluckman E., Broxmeyer H.A., Auerbach A.D., et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling // N Engl J Med. 1989. Vol. 321. P. 1174–1178. doi: 10.1056/NEJM198910263211707 |
| [9] |
Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995;1(10):1017–1023. doi: 10.1038/nm1095-1017 |
| [10] |
Kohn D.B., Weinberg K.I., Nolta J.A., et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency // Nat Med. 1995. Vol. 1, N. 10. P. 1017–1023. doi: 10.1038/nm1095-1017 |
| [11] |
Solves P, Mirabet V, Roig R. Volume reduction in routine cord blood banking. Curr Stem Cell Res Ther. 2010;5:362–366. doi: 10.2174/157488810793351703 |
| [12] |
Solves P., Mirabet V., Roig R. Volume reduction in routine cord blood banking // Curr Stem Cell Res Ther. 2010. Vol. 5. P. 362–366. doi: 10.2174/157488810793351703 |
| [13] |
Akel S, Regan D, Wall D, et al. Current thawing and infusion practice of cryopreserved cord blood: The impact on graft quality, recipient safety, and transplantation outcomes. Transfusion. 2014;54:2997–3009. doi: 10.1111/trf.12719 |
| [14] |
Akel S., Regan D., Wall D., et al. Current thawing and infusion practice of cryopreserved cord blood: The impact on graft quality, recipient safety, and transplantation outcomes // Transfusion. 2014. Vol. 54. P. 2997–3009. doi: 10.1111/trf.12719 |
| [15] |
Ademokun J, Chapman C, Dunn J, et al. Umbilical cord blood collection and separation for haematopoietic progenitor cell banking. Bone Marrow Transplant. 1997;19:1023–1028. doi: 10.1038/sj.bmt.1700788 |
| [16] |
Ademokun J., Chapman C., Dunn J., et al. Umbilical cord blood collection and separation for haematopoietic progenitor cell banking // Bone Marrow Transplant. 1997. Vol. 19. P. 1023–1028. doi: 10.1038/sj.bmt.1700788 |
| [17] |
Reboredo NM, Diaz A, Castro A, Villaescusa RG. Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant. 2001;26:1263–1270. doi: 10.1038/sj.bmt.1702728 |
| [18] |
Reboredo N.M., Diaz A., Castro A., Villaescusa R.G. Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation // Bone Marrow Transplant. 2001. Vol. 26. P. 1263–1270. doi: 10.1038/sj.bmt.1702728 |
| [19] |
Neuhoff S, Moers J, Rieks M, et al. Proliferation differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007;35(7):1119–1131. doi: 10.1016/j.exphem.2007.03.019 |
| [20] |
Neuhoff S., Moers J., Rieks M., et al. Proliferation differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro // Exp Hematol. 2007. Vol. 35, N. 7. P. 1119–1131. doi: 10.1016/j.exphem.2007.03.019 |
| [21] |
Pranke P, Failace RR, Allebrandt WF, et al. Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematol. 2001;105:71–76. doi: 10.1159/000046537 |
| [22] |
Pranke P., Failace R.R., Allebrandt W.F., et al. Hematologic and immunophenotypic characterization of human umbilical cord blood // Acta Haematol. 2001. Vol. 105. P. 71–76. doi: 10.1159/000046537 |
| [23] |
Harris D, Schumacher M, Locascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci USA. 1992;89:10006–10010. doi: 10.1073/pnas.89.21.10006 |
| [24] |
Harris D., Schumacher M., Locascio J., et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes // Proc Natl Acad Sci USA. 1992. Vol. 89. P. 10006–10010. doi: 10.1073/pnas.89.21.10006 |
| [25] |
D’Arena G, Musto P, Cascavilla N, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: Immunophenotypic features. Haematologica. 1998;83:197–203. |
| [26] |
D’Arena G., Musto P., Cascavilla N., et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: Immunophenotypic features // Haematologica. 1998. Vol. 83. P. 197–203. |
| [27] |
Ballen KK, Wilson M, Wuu J, et al. Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units. Bone Marrow Transplant. 2001;27(1):7–14. doi: 10.1038/sj.bmt.1702729 |
| [28] |
Ballen K.K., Wilson M., Wuu J., et al. Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units // Bone Marrow Transplant. 2001. Vol. 27, N. 1. P. 7–14. doi: 10.1038/sj.bmt.1702729 |
| [29] |
Cervera A, Lillo R, García-Sánchez F, et al. Flow cytometric assessment of hematopoietic cell subsets in cryopreserved preterm and term cord blood, influence of obstetrical parameters, and availability for transplantation. Am J Hematol. 2006;81(6):397–410. doi: 10.1002/ajh.20598 |
| [30] |
Cervera A., Lillo R., García-Sánchez F., et al. Flow cytometric assessment of hematopoietic cell subsets in cryopreserved preterm and term cord blood, influence of obstetrical parameters, and availability for transplantation // Am J Hematol. 2006. Vol. 81, N. 6. P. 397–410. doi: 10.1002/ajh.20598 |
| [31] |
Broxmeyer HE. Biology of cord blood cells and future prospects of enhanced clinical benefit. Cytotherapy. 2005;7(3):209–218. doi: 10.1080/14653240510027190 |
| [32] |
Broxmeyer H.E. Biology of cord blood cells and future prospects of enhanced clinical benefit // Cytotherapy. 2005. Vol. 7, N. 3. P. 209–218. doi: 10.1080/14653240510027190 |
| [33] |
Ali H, Bahbahani H. Umbilical cord blood stem cells — potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp. 2010;70:316–324. |
| [34] |
Ali H., Bahbahani H. Umbilical cord blood stem cells — potential therapeutic tool for neural injuries and disorders // Acta Neurobiol Exp. 2010. Vol. 70. P. 316–324. |
| [35] |
Kogler G, Sensken S, Airey J, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200(2):123–135. doi: 10.55782/ane-2010-1804 |
| [36] |
Kogler G., Sensken S., Airey J., et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential // J Exp Med. 2004. Vol. 200, N. 2. P. 123–135. doi: 10.55782/ane-2010-1804 |
| [37] |
Mcguckin P, Forraz N, Baradez M, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245–255. doi: 10.1111/j.1365-2184.2005.00346.x |
| [38] |
Mcguckin P., Forraz N., Baradez M., et al. Production of stem cells with embryonic characteristics from human umbilical cord blood // Cell Prolif. 2005. Vol. 38. P. 245–255. doi: 10.1111/j.1365-2184.2005.00346.x |
| [39] |
Paton M, McDonald C, Allison B, et al. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: Designing targeted stem cell therapies. Front Neurosci. 2017;11(200);1–12. doi: 10.3389/fnins.2017.00200 |
| [40] |
Paton M., McDonald C., Allison B., et al. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: Designing targeted stem cell therapies // Front Neurosci. 2017. Vol. 11, N. 200. P. 1–12. doi: 10.3389/fnins.2017.00200 |
| [41] |
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–242. doi: 10.1046/j.1365-2141.2000.01986.x |
| [42] |
Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood // Br J Haematol. 2000. Vol. 109, N. 1. P. 235–242. doi: 10.1046/j.1365-2141.2000.01986.x |
| [43] |
Abbott A. Doubt cast over tiny stem cells. Nature. 2013;499:390. doi: 10.1038/499390a |
| [44] |
Abbott A. Doubt cast over tiny stem cells // Nature. 2013. Vol. 499. P. 390. doi: 10.1038/499390a |
| [45] |
Podesta M, Bruschettini M, Cossu C, et al. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples. PLoS One. 2015;10(9):e0138680. doi: 10.1371/journal.pone.0138680 |
| [46] |
Podesta M., Bruschettini M., Cossu C., et al. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples // PLoS One. 2015. Vol. 10, N. 9. Р. e0138680. doi: 10.1371/journal.pone.0138680 |
| [47] |
Gluckman E. Milestones in umbilical cord blood transplantation. Blood Rev. 2011;25:55–59. doi: 10.1016/j.blre.2011.06.003 |
| [48] |
Gluckman E. Milestones in umbilical cord blood transplantation // Blood Rev. 2011. Vol. 25. P. 55–59. doi: 10.1016/j.blre.2011.06.003 |
| [49] |
Behzad-Behbahani A, Pouransari R, Tabei SZ, et al. Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transplant Proc. 2005;37:3211–3212. doi: 10.1016/j.transproceed.2005.07.007 |
| [50] |
Behzad-Behbahani A., Pouransari R., Tabei S.Z., et al. Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation // Transplant Proc. 2005. Vol. 37. P. 3211–3212. doi: 10.1016/j.transproceed.2005.07.007 |
| [51] |
Broxmeyer H, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA. 1992;89:4109–4113. doi: 10.1073/pnas.89.9.4109 |
| [52] |
Broxmeyer H., Hangoc G., Cooper S., et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults // Proc Natl Acad Sci USA. 1992. Vol. 89. P. 4109–4113. doi: 10.1073/pnas.89.9.4109 |
| [53] |
Gluckman F, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7:219–227. doi: 10.1080/14653240510027136 |
| [54] |
Gluckman F., Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells // Cytotherapy. 2005. Vol. 7. P. 219–227. doi: 10.1080/14653240510027136 |
| [55] |
Vaziri H, Dragowska W, Allsopp RC, et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91:9857–9860. doi: 10.1073/pnas.91.21.9857 |
| [56] |
Vaziri H., Dragowska W., Allsopp R.C., et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age // Proc Natl Acad Sci USA. 1994. Vol. 91. P. 9857–9860. doi: 10.1073/pnas.91.21.9857 |
| [57] |
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559 |
| [58] |
Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses // Blood. 2005. Vol. 105. P. 1815–1822. doi: 10.1182/blood-2004-04-1559 |
| [59] |
Gatina DZ, Gazizov IN, Zhuravleva MN, et al. Induction of angiogenesis by genetically modified human umbilical cord blood mononuclear cells. Int J Mol Sci. 2023;24(5):4396. doi: 10.3390/ijms24054396 |
| [60] |
Gatina D.Z., Gazizov I.N., Zhuravleva M.N., et al. Induction of angiogenesis by genetically modified human umbilical cord blood mononuclear cells // Int J Mol Sci. 2023. Vol. 24, N. 5. 4396. doi: 10.3390/ijms24054396 |
| [61] |
Garbuzova-Davis S, Willing AE, Zigova N, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: Distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12(3):255–270. doi: 10.1089/152581603322022990 |
| [62] |
Garbuzova-Davis S., Willing A.E., Zigova N., et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: Distribution, migration, and differentiation // J Hematother Stem Cell Res. 2003. Vol. 12, N. 3. P. 255–270. doi: 10.1089/152581603322022990 |
| [63] |
Islamov RR, Rizvanov AA, Mukhamedyarov MA, et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr Gene Ther. 2015;15(3):266–276. doi: 10.2174/1566523215666150126122317 |
| [64] |
Islamov R.R., Rizvanov A.A., Mukhamedyarov M.A., et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule // Curr Gene Ther. 2015. Vol. 15, N. 3. P. 266–276. doi: 10.2174/1566523215666150126122317 |
| [65] |
Koerbling M, Estrov RZ, Champlin R, Shpall E. Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005;7(3):258–261. doi: 10.1080/14653240510027145 |
| [66] |
Koerbling M., Estrov R.Z., Champlin R., Shpall E. Umbilical cord blood-derived cells for tissue repair // Cytotherapy. 2005. Vol. 7, N. 3. P. 258–261. doi: 10.1080/14653240510027145 |
| [67] |
Neuhoff S, Moers J, Rieks M, et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007;35(7):1119–1131. doi: 10.1016/j.exphem.2007.03.019 |
| [68] |
Neuhoff S., Moers J., Rieks M., et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro // Exp Hematol. 2007. Vol. 35, N. 7. P. 1119–1131. doi: 10.1016/j.exphem.2007.03.019 |
| [69] |
Fan CG, Zhang QJ, Tang FW, et al. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380(3):322–325. doi: 10.1016/j.neulet.2005.01.070 |
| [70] |
Fan C.G., Zhang Q.J., Tang F.W., et al. Human umbilical cord blood cells express neurotrophic factors // Neurosci Lett. 2005. Vol. 380, N. 3. P. 322–325. doi: 10.1016/j.neulet.2005.01.070 |
| [71] |
Yang J, Ren Z, Zhang C, et al. Safety of autologous cord blood cells for preterms: A descriptive study. Stem Cells Int. 2018;15:5268057. doi: 10.1155/2018/5268057 |
| [72] |
Yang J., Ren Z., Zhang C., et al. Safety of autologous cord blood cells for preterms: A descriptive study // Stem Cells Int. 2018. Vol. 15. Р. 5268057. doi: 10.1155/2018/5268057 |
| [73] |
Yang WZ, Zhang Y, Wu F, et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med. 2010;3(8):75–81. doi: 10.1186/1479-5876-8-75 |
| [74] |
Yang W.Z., Zhang Y., Wu F., et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions // J Transl Med. 2010. Vol. 3, N. 8. P. 75–81. doi: 10.1186/1479-5876-8-75 |
| [75] |
Liu J, Sun W, Liu C, Na Q. Umbilical cord blood-derived exosomes in maternal-fetal disease: A review. Reprod Sci. 2023;309(1);54–61. doi: 10.1007/s43032-022-00879-1 |
| [76] |
Liu J., Sun W., Liu C., Na Q. Umbilical cord blood-derived exosomes in maternal-fetal disease: A review // Reprod Sci. 2023. Vol. 30, N. 1. P. 54–61. doi: 10.1007/s43032-022-00879-1 |
| [77] |
Hashimoto S, Kato K, Kai S, et al. Adverse events caused by cord blood infusion in Japan during a 5-year period. Vox Sang. 2023;118(1):84–92. doi: 10.1111/vox.13379 |
| [78] |
Hashimoto S., Kato K., Kai S., et al. Adverse events caused by cord blood infusion in Japan during a 5-year period // Vox Sang. 2023. Vol. 118, N. 1. P. 84–92. doi: 10.1111/vox.13379 |
| [79] |
Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: An updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23(10):1607–1613. doi: 10.1016/j.bbmt.2017.05.032 |
| [80] |
Rizk M., Aziz J., Shorr R., Allan D.S. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: An updated systematic scoping review of the literature // Biol Blood Marrow Transplant. 2017. Vol. 23, N. 10. P. 1607–1613. doi: 10.1016/j.bbmt.2017.05.032 |
| [81] |
Gunn AJ, Laptook AR, Robertson NJ, et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res. 2017;81(1–2):202–209. doi: 10.1038/pr.2016.198 |
| [82] |
Gunn A.J., Laptook A.R., Robertson N.J., et al. Therapeutic hypothermia translates from ancient history in to practice // Pediatr Res. 2017. Vol. 81, N. 1–2. P. 202–209. doi: 10.1038/pr.2016.198 |
| [83] |
Wassink G, Gunn ER, Drury PP, et al. The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci. 2014;8(8):1–11. doi: 10.3389/fnins.2014.00040 |
| [84] |
Wassink G., Gunn E.R., Drury P.P., et al. The mechanisms and treatment of asphyxial encephalopathy // Front Neurosci. 2014. Vol. 8, N. 8. P. 1–11. doi: 10.3389/fnins.2014.00040 |
| [85] |
Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973–979. doi: 10.1016/j.jpeds.2013.11.036 |
| [86] |
Cotten C.M., Murtha A.P., Goldberg R.N., et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy // J Pediatr. 2014. Vol. 164. P. 973–979. doi: 10.1016/j.jpeds.2013.11.036 |
| [87] |
Tsuji M, Sawada M, Watabe S, et al. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: A pilot study for feasibility and safety. Sci Rep. 2020;10(1):4603. doi: 10.1038/s41598-020-61311-9 |
| [88] |
Tsuji M., Sawada M., Watabe S., et al. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: A pilot study for feasibility and safety // Sci Rep. 2020. Vol. 10, N. 1. 4603. doi: 10.1038/s41598-020-61311-9 |
| [89] |
Raju TN, Nelson KB, Ferriero D, Lynch JK. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120:609–616. doi: 10.1542/peds.2007-0336 |
| [90] |
Raju T.N., Nelson K.B., Ferriero D., Lynch J.K. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke // Pediatrics. 2007. Vol. 120. P. 609–616. doi: 10.1542/peds.2007-0336 |
| [91] |
Lehman LL, Rivkin MJ. Perinatal arterial ischemic stroke: Presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51(6):760–768. doi: 10.1016/j.pediatrneurol.2014.07.031 |
| [92] |
Lehman L.L., Rivkin M.J. Perinatal arterial ischemic stroke: Presentation, risk factors, evaluation, and outcome // Pediatr Neurol. 2014. Vol. 51, N. 6. P. 760–768. doi: 10.1016/j.pediatrneurol.2014.07.031 |
| [93] |
Sun J, Allison J, McLaughlin C, et al. Differences in quality between privately and publicly banked umbilical cord blood units: A pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50:1980–1987. doi: 10.1111/j.1537-2995.2010.02720.x |
| [94] |
Sun J., Allison J., McLaughlin C., et al. Differences in quality between privately and publicly banked umbilical cord blood units: A pilot study of autologous cord blood infusion in children with acquired neurologic disorders // Transfusion. 2010. Vol. 50. P. 1980–1987. doi: 10.1111/j.1537-2995.2010.02720.x |
| [95] |
Min K, Song J, Kang JY, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: A double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–591. doi: 10.1002/stem.1304 |
| [96] |
Min K., Song J., Kang J.Y., et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: A double-blind, randomized, placebo-controlled trial // Stem Cells. 2013. Vol. 31, N. 3. P. 581–591. doi: 10.1002/stem.1304 |
| [97] |
Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: A randomized, placebo-controlled trial. Stem Cells Transl Med. 2017;6:2071–2078. doi: 10.1002/sctm.17-0102 |
| [98] |
Sun J.M., Song A.W., Case L.E., et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: A randomized, placebo-controlled trial // Stem Cells Transl Med. 2017. Vol. 6. P. 2071–2078. doi: 10.1002/sctm.17-0102 |
| [99] |
Huang L, Zhang C, Gu J, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27:325–334. doi: 10.1177/0963689717729379 |
| [100] |
Huang L., Zhang C., Gu J., et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy // Cell Transplant. 2018. Vol. 27. P. 325–334. doi: 10.1177/0963689717729379 |
| [101] |
Maenner MJ, Warren Z, Williams AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. MMWR Surveill Summ. 2023;72:1–14. doi: 10.15585/mmwr.ss7202a1 |
| [102] |
Maenner M.J., Warren Z., Williams A.R., et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 Sites, United States, 2020 // MMWR Surveill Summ. 2023. Vol. 72. P. 1–14. doi: 10.15585/mmwr.ss7202a1 |
| [103] |
Lv YT, Zhang Y, Liu M, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013;11:196. doi: 10.1186/1479-5876-11-196 |
| [104] |
Lv Y.T., Zhang Y., Liu M., et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism // J Transl Med. 2013. Vol. 11. P. 196. doi: 10.1186/1479-5876-11-196 |
| [105] |
Li Q, Chen CF, Wang DY, et al. Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism. Genet Mol Res. 2015;14(3):8725–8732. doi: 10.4238/2015.July.31.21 |
| [106] |
Li Q., Chen C.F., Wang D.Y., et al. Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism // Genet Mol Res. 2015. Vol. 14, N. 3. P. 8725–8732. doi: 10.4238/2015.July.31.21 |
| [107] |
Dawson G, Sun JM, Davlantis KS, et al. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl Med. 2017;6(5):1332–1339. doi: 10.1002/sctm.16-0474 |
| [108] |
Dawson G., Sun J.M., Davlantis K.S., et al. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial // Stem Cells Transl Med. 2017. Vol. 6, N. 5. P. 1332–1339. doi: 10.1002/sctm.16-0474 |
| [109] |
Murias M, Major S, Compton S, et al. Electrophysiological biomarkers predict clinical improvement in an open-label trial assessing efficacy of autologous umbilical cord blood for treatment of autism. Stem Cells Transl Med. 2018;7(11):783–791. doi: 10.1002/sctm.18-0090 |
| [110] |
Murias M., Major S., Compton S., et al. Electrophysiological biomarkers predict clinical improvement in an open-label trial assessing efficacy of autologous umbilical cord blood for treatment of autism // Stem Cells Transl Med. 2018. Vol. 7, N. 11. P. 783–791. doi: 10.1002/sctm.18-0090 |
| [111] |
Carpenter KLH, Major S, Tallman C, et al. White matter tract changes associated with clinical improvement in an open-label trial assessing autologous umbilical cord blood for treatment of young children with autism. Stem Cells Transl Med. 2019;8(2):138–147. doi: 10.1002/sctm.18-0251 |
| [112] |
Carpenter K.L.H., Major S., Tallman C., et al. White matter tract changes associated with clinical improvement in an open-label trial assessing autologous umbilical cord blood for treatment of young children with autism // Stem Cells Transl Med. 2019. Vol. 8, N. 2. P. 138–147. doi: 10.1002/sctm.18-0251 |
| [113] |
Chez M, Lepage C, Parise C, et al. Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism. Stem Cells Transl Med. 2018;7(4):333–341. doi: 10.1002/sctm.17-0042 |
| [114] |
Chez M., Lepage C., Parise C., et al. Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism // Stem Cells Transl Med. 2018. Vol. 7. N. 4. P. 333–341. doi: 10.1002/sctm.17-0042 |
| [115] |
Szpecht D, Szymankiewicz M, Nowak I, Gadzinowski J. Intraventricular hemorrhage in neonates born before 32 weeks of gestation-retrospective analysis of risk factors. Childs Nerv Syst. 2016;32:1399–1404. doi: 10.1007/s00381-016-3127-x |
| [116] |
Szpecht D., Szymankiewicz M., Nowak I., Gadzinowski J. Intraventricular hemorrhage in neonates born before 32 weeks of gestation-retrospective analysis of risk factors // Childs Nerv Syst. 2016. Vol. 32. P. 1399–1404. doi: 10.1007/s00381-016-3127-x |
| [117] |
Gotardo JW, Volkmer NFV, Stangler GP, et al. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS ONE. 2019;14:e0223427. doi: 10.1371/journal.pone.0223427 |
| [118] |
Gotardo J.W., Volkmer N.F.V., Stangler G.P., et al. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis // PLoS ONE. 2019. Vol. 14. Р. e0223427. doi: 10.1371/journal.pone.0223427 |
| [119] |
Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: Phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7:847–856. doi: 10.1002/sctm.17-0219 |
| [120] |
Ahn S.Y., Chang Y.S., Sung S.I, Park W.S. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: Phase I dose-escalation clinical trial // Stem Cells Transl Med. 2018. Vol. 7. P. 847–856. doi: 10.1002/sctm.17-0219 |
| [121] |
Lee TK, Lu CY, Tsai ST, et al. Complete restoration of motor function in acute cerebral stroke treated with allogeneic human umbilical cord blood monocytes: Preliminary results of a phase I clinical. Trial Cell Transplant. 2021;30:1–7. doi: 10.1177/09636897211067447 |
| [122] |
Lee T.K., Lu C.Y., Tsai S.T., et al. Complete restoration of motor function in acute cerebral stroke treated with allogeneic human umbilical cord blood monocytes: Preliminary results of a phase I clinical // Trial Cell Transplant. 2021. Vol. 30. P. 1–7. doi: 10.1177/09636897211067447 |
| [123] |
Kang KS, Kim SW, Oh YH, et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: A case study. Cytotherapy. 2005;7(4):368–373. doi: 10.1080/14653240500238160 |
| [124] |
Kang K.S., Kim S.W., Oh Y.H., et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: A case study // Cytotherapy. 2005. Vol. 7, N. 4. P. 368–373. doi: 10.1080/14653240500238160 |
| [125] |
Liu J, Han D, Wang Z, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–191. doi: 10.1016/j.jcyt.2012.09.005 |
| [126] |
Liu J., Han D., Wang Z., et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells // Cytotherapy. 2013. Vol. 15, N. 2. P. 185–191. doi: 10.1016/j.jcyt.2012.09.005 |
| [127] |
Ichim TE, Solano F, Lara F, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: A case report. Int Arch Med. 2010;3:30. doi: 10.1186/1755-7682-3-30 |
| [128] |
Ichim T.E., Solano F., Lara F., et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: A case report // Int Arch Med. 2010. Vol. 3. P. 30. doi: 10.1186/1755-7682-3-30 |
| [129] |
Yao L., He C., Zhao Y., et al. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8(5):397–403. doi: 10.3969/j.issn.1673-5374.2013.05.002 |
| [130] |
Yao L., He C., Zhao Y., et al. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy // Neural Regen Res. 2013. Vol. 8, N. 5. P. 397–403. doi: 10.3969/j.issn.1673-5374.2013.05.002 |
| [131] |
Zhu H, Poon W, Liu Y, et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25(11):1925–1943. doi: 10.3727/096368916X691411 |
| [132] |
Zhu H., Poon W., Liu Y., et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury // Cell Transplant. 2016. Vol. 25, N. 11. P. 1925–1943. doi: 10.3727/096368916X691411 |
| [133] |
Smirnov VA, Radaev SM, Morozova YV, et al. Systemic administration of allogeneic cord blood mononuclear cells in adults with severe acute contusion spinal cord injury: Phase 1/2a pilot clinical study-safety and primary efficacy evaluation. World Neurosurg. 2022;161;319–338. doi: 10.1016/j.wneu.2022.02.004 |
| [134] |
Smirnov V.A., Radaev S.M., Morozova Y.V., et al. Systemic administration of allogeneic cord blood mononuclear cells in adults with severe acute contusion spinal cord injury: Phase 1/2a pilot clinical study-safety and primary efficacy evaluation // World Neurosurg. 2022. Vol. 161. P. 319–338. doi: 10.1016/j.wneu.2022.02.004 |
| [135] |
Ghen MJ, Roshan R, Roshan RO, et al. Potential clinical applications using stem cells derived from human umbilical cord blood. Reproductive BioMedicine Online. 2006;13(4):562–572. |
| [136] |
Ghen M.J., Roshan R., Roshan R.O., et al. Potential clinical applications using stem cells derived from human umbilical cord blood // Reproductive BioMedicine Online. 2006. Vol. 13, N. 4. P. 562–572. |
| [137] |
Meng M, Liu Y, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Transl Res. 2018;10(1):212–223. |
| [138] |
Meng M., Liu Y., Wang W., et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis // Am J Transl Res. 2018. Vol. 10, N. 1. P. 212–223. |
| [139] |
Gong D, Wang W, Yuan X, et al. Long-term clinical efficacy of human umbilical cord blood mononuclear cell transplantation by lateral atlanto-occipital space puncture (Gong’s puncture) for the treatment of multiple system atrophy. Cell Transpl. 2022;31:1–6. doi: 10.1177/09636897221136553 |
| [140] |
Gong D., Wang W., Yuan X., et al. Long-term clinical efficacy of human umbilical cord blood mononuclear cell transplantation by lateral atlanto-occipital space puncture (Gong’s puncture) for the treatment of multiple system atrophy // Cell Transpl. 2022. Vol. 31. P. 1–6. doi: 10.1177/09636897221136553 |
| [141] |
Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimer's Research and Therapy. 2021;13(1):154. doi: 10.1186/s13195-021-00897-2 |
| [142] |
Kim H.J., Cho K.R., Jang H., et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial // Alzheimer's Research and Therapy. 2021. Vol. 13, N. 1. P. 154. doi: 10.1186/s13195-021-00897-2 |
| [143] |
Master YL, Tian BWM, Jin MXF, et al. A clinical research of 11cases of human umbilical cord mesenchymal stem cells for curing senile vascular dementia. Transpl Immunol. 2022;74:101669. doi: 10.1016/j.trim.2022.101669 |
| [144] |
Master Y.L., Tian B.W.M., Jin M.X.F., et al. A clinical research of 11 cases of human umbilical cord mesenchymal stem cells for curing senile vascular dementia // Transpl Immunol. 2022. Vol. 74. P. 101669. doi: 10.1016/j.trim.2022.101669 |
Eco-Vector
/
| 〈 |
|
〉 |