Is anti-NMDA receptor encephalitis real? II. Therapeutic challenges

Evgeny V. Snedkov , Igor A. Volchek , Ilia V. Lemeshev

Neurology Bulletin ›› 2024, Vol. LVI ›› Issue (1) : 83 -94.

PDF (1248KB)
Neurology Bulletin ›› 2024, Vol. LVI ›› Issue (1) : 83 -94. DOI: 10.17816/nb624112
Discussions
review-article

Is anti-NMDA receptor encephalitis real? II. Therapeutic challenges

Author information +
History +
PDF (1248KB)

Abstract

The first part of the review challenges the diagnostic concept of anti-NMDA receptor encephalitis (ANMDARE). The second part focuses on analyzing current therapeutic approaches. It is demonstrated that the use of antipsychotics or immunosuppressants poses the risk of severe complications, potentially leading to fatal outcomes, in the near or distant future. Comparing clinical and neurobiological effects associated with antibodies to the GluN1 subunit of the glutamate N-methyl-D-aspartate receptors (NMDAR1-AB) and the administration of subanesthetic doses of the non-competitive NMDA receptor antagonist Ketamine highly suggests a neuroprotective, health-promoting role of NMDAR1-AB, which should not be suppressed but rather potentiated. Benzodiazepines and electroconvulsive therapy (ECT) remain the treatment of choice for acute polymorphic hyperkinetic psychoses.

Keywords

anti-NMDA receptor encephalitis / cycloid psychosis / neuroleptic malignant syndrome / immunopsychiatry / immunotherapy / antipsychotic agents / benzodiazepines / ECT / Ketamine / neuroprotection / sanogenesis

Cite this article

Download citation ▾
Evgeny V. Snedkov, Igor A. Volchek, Ilia V. Lemeshev. Is anti-NMDA receptor encephalitis real? II. Therapeutic challenges. Neurology Bulletin, 2024, LVI(1): 83-94 DOI:10.17816/nb624112

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vasenina EE, Levin OS, Gankina OA et al. Autoimmune anti-NMDA-R encephalitis. Zhurnal Nevrologii i Psikhiatrii imeni SS Korsakova. 2017;117(2):110 116. (In Russ). doi: 10.17116/jnevro201711721110-116

[2]

Васенина Е.Е., Левин О.P., Ганькина О.А. и др. Аутоиммунный энцефалит с антителами к NMDA-рецепторам // Журнал неврологии и психиатрии. 2017. T. 117. №2. C. 110–116. doi: 10.17116/jnevro201711721110-116

[3]

Shmukler AB, Ivashkina AA, Murashko AA. A case of anti-NMDA-receptor encephalitis presenting as febrile catatonia. Bulletin of Siberian Medicine. 2019;18(4):266–272. (In Russ). doi: 10.20538/1682-0363-2019-4-266-272

[4]

Шмуклер А.Б., Ивашкина А.А., Мурашко А.А. Случай анти-NMDA-рецепторного энцефалита с клинической картиной фебрильной кататонии // Бюллетень сибирской медицины. 2019. T. 18. №4. C. 266–272. doi: 10.20538/1682-0363-2019-4-266-272

[5]

Espinola-Nadurille M, Flores-Rivera J, Rivas-Alonso V et al. Catatonia in patients with anti-NMDA receptor encephalitis. Psychiatry Clin Neurosci. 2019;73(9):574–580. doi: 10.1111/pcn.12867

[6]

Espinola-Nadurille M., Flores-Rivera J., Rivas-Alonso V. et al. Catatonia in patients with anti-NMDA receptor encephalitis // Psychiatry and Clinical Neurosciences. 2019. Vol. 73. N. 9. P. 574–580. doi: 10.1111/pcn.12867

[7]

Giné Servén E, Boix Quintana E, Guanyabens Buscà N et al. Considerations of psychotic symptomatology in anti-NMDA encephalitis: Similarity to cycloid psychosis. Clin Case Rep. 2019;7(12):2456–2461. doi: 10.1002/ccr3.2522

[8]

Giné Servén E., Boix Quintana E., Guanyabens Buscà N. et al. Considerations of psychotic symptomatology in anti-NMDA encephalitis: Similarity to cycloid psychosis // Clinical Case Reports. 2019. Vol. 7. N. 12. P. 2456–2461. doi: 10.1002/ccr3.2522

[9]

Kruse JL, Jeffrey JK, Davis MC et al. Anti-N-methyl-D-aspartate receptor encephalitis: A targeted review of clinical presentation, diagnosis, and approaches to psychopharmacologic management. Ann Clin Psychiatry. 2014;26(2):111–119.

[10]

Kruse J.L., Jeffrey J.K., Davis M.C. et al. Anti-N-methyl-D-aspartate receptor encephalitis: A targeted review of clinical presentation, diagnosis, and approaches to psychopharmacologic management // Ann. Clin. Psychiatry. 2014. Vol. 26. N. 2. P. 111–119.

[11]

Mohammad SS, Wallace G, Ramanathan S et al. Antipsychotic-induced akathisia and neuroleptic malignant syndrome in anti-NMDAR encephalitis. Ann Clin Psychiatry. 2014;26(4):297–298.

[12]

Mohammad S.S., Wallace G., Ramanathan S. et al. Antipsychotic-induced akathisia and neuroleptic malignant syndrome in anti-NMDAR encephalitis // 2014. Vol. 26. N. 3. P. 1e–2e.

[13]

Caroff SN, Campbell EC. Risk of neuroleptic malignant syndrome in patients with NMDAR encephalitis. Neurol Sci. 2015;36(3):479–480. doi: 10.1007/s10072-014-2022-z

[14]

Caroff S.N., Campbell E.C. Risk of neuroleptic malignant syndrome in patients with NMDAR encephalitis // Neurological Sciences. 2015. Vol. 36. P. 479–480. doi: 10.1007/s10072-014-2022-z.

[15]

Caroff SN, Mann SC, Campbell EC. Anti-N-methyl-D-aspartate receptor encephalitis and risk of neuroleptic malignant syndrome. Pediatr Neurol. 2017;66:e3. doi: 10.1016/j.pediatrneurol.2016.10.005

[16]

Caroff S.N., Mann S.C., Campbell E.C. Anti-N-methyl-D-aspartate receptor encephalitis and risk of neuroleptic malignant syndrome // Pediatric Neurology. 2017. Vol. 66. P. e3. doi: 10.1016/j.pediatrneurol.2016.10.005

[17]

Ban T.A. Clinical pharmacology and Leonhard’s classification of endogenous psychoses. Psychopathology. 1990;23(4–6):331–338. doi: 10.1159/000284677.

[18]

Ban T.A. Clinical pharmacology and Leonhard’s classification of endogenous psychoses // Psychopathology. 1990. Vol. 23. N. 4–6. P. 331–338. doi: 10.1159/000284677

[19]

Leonhard K, Beckmann H. Classification of endogenous psychoses and their differential etiology. 2nd revised and enlarged ed. New York: Springer Wien; 1999. 402 p.

[20]

Leonhard K., Beckmann H., Cahn C.H. Classification of endogenous psychoses and their differentiated etiology. 2nd revised and enlarged ed. New York: Springer Wien; 1999. 402 p.

[21]

Ciano-Petersen NL, Muсiz-Castrillo S, Vogrig A et al. Immunomodulation in the acute phase of autoimmune encephalitis. Rev Neurol (Paris). 2022;178(1–2):34–47. doi: 10.1016/j.neurol.2021.12.001

[22]

Ciano-Petersen N.L., Muсiz-Castrillo S., Vogrig A. et al. Immunomodulation in the acute phase of autoimmune encephalitis // Revue Neurologique. 2022. Vol. 178. N. 1–2. P. 34–47. doi: 10.1016/j.neurol.2021.12.001

[23]

Titulaer MJ, McCracken L, Gabilondo I et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 2013;12(2):157–165. doi: 10.1016/S1474-4422(12)70310-1

[24]

Titulaer M.J., McCracken L., Gabilondo I. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study // The Lancet Neurology. 2013. Vol. 12. N. 2. P. 157–165. doi: 10.1016/S1474-4422(12)70310-1

[25]

Nosadini M, Eyre M, Molteni E et al. Use and safety of immunotherapeutic management of N-methyl-D-aspartate receptor antibody encephalitis: A meta-analysis. JAMA Neurol. 2021;78(11):1333–1344. doi: 10.1001/jamaneurol.2021.3188

[26]

Nosadini M., Eyre M., Molteni E. et al. Use and safety of immunotherapeutic management of N-methyl-D-aspartate receptor antibody encephalitis: A meta-analysis // JAMA Neurology. 2021. Vol. 78. N. 11. P. 1333–1344. doi: 10.1001/jamaneurol.2021.3188

[27]

Remy KE, Custer JW, Cappell J et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis: A review with pooled analysis and critical care emphasis. Front Pediatr. 2017;5:250. doi: 10.3389/fped.2017.00250

[28]

Remy K.E., Custer J.W., Cappell J. et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis: A review with pooled analysis and critical care emphasis // Frontiers in Pediatrics. 2017. Vol. 5. P. 250. doi: 10.3389/fped.2017.00250

[29]

Trewin BP, Freeman I, Ramanathan S, Irani SR. Immunotherapy in autoimmune encephalitis. Curr Opin Neurol. 2022;35(3):399–414. doi: 10.1097/WCO.0000000000001048

[30]

Trewin B.P., Freeman I., Ramanathan S., Irani S.R. Immunotherapy in autoimmune encephalitis // Current Opinion in Neurology. 2022. Vol. 35. N. 3. P. 399–414. doi: 10.1097/WCO.0000000000001048

[31]

Flanagan EP, Geschwind MD, Lopez-Chiriboga AS et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023;80(1):30–39. doi: 10.1001/jamaneurol.2022.4251

[32]

Flanagan E.P., Geschwind M.D., Lopez-Chiriboga A.S. et al. Autoimmune encephalitis misdiagnosis in adults // JAMA Neurology. 2023. Vol. 80. N. 1. P. 30–39. doi: 10.1001/jamaneurol.2022.4251

[33]

Iizuka T, Kaneko J, Tominaga N et al. Association of progressive cerebellar atrophy with long-term outcome in patients with anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol. 2016;73(6):706–713. doi: 10.1001/jamaneurol.2016.0232

[34]

Iizuka T., Kaneko J., Tominaga N. et al. Association of progressive cerebellar atrophy with long-term outcome in patients with anti-N-methyl-D-aspartate receptor encephalitis // JAMA Neurology. 2016. Vol. 73. N. 6. P. 706–713. doi: 10.1001/jamaneurol.2016.0232

[35]

Liu P, Yan H, Li H et al. Overlapping anti-NMDAR encephalitis and multiple sclerosis: A case report and literature review. Front Immunol. 2023;14:1088801. doi: 10.3389/fimmu.2023.1088801

[36]

Liu P., Yan H., Li H. et al. Overlapping anti-NMDAR encephalitis and multiple sclerosis: A case report and literature review // Frontiers in Immunology. 2023. Vol. 14. P. 1088801. doi: 10.3389/fimmu.2023.1088801

[37]

Long Q, Lv Z, Zhao J et al. Cerebral gray matter volume changes in patients with anti-N-methyl-D-aspartate receptor encephalitis: A voxel-based morphometry study. Front Neurol. 2022;13:892242. doi: 10.3389/fneur.2022.892242

[38]

Long Q., Lv Z., Zhao J. et al. Cerebral gray matter volume changes in patients with anti-N-methyl-D-aspartate receptor encephalitis: A voxel-based morphometry study // Frontiers in Neurology. 2022. Vol. 13. P. 892242. doi: 10.3389/fneur.2022.892242

[39]

Xu J, Guo Y, Li J et al. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis. J Neurol. 2022;269(1):389–398. doi: 10.1007/s00415-021-10643-1

[40]

Xu J., Guo Y., Li J. et al. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis // Journal of Neurology. 2022. Vol. 269. P. 389–398. doi: 10.1007/s00415-021-10643-1

[41]

Zhong R, Chen Q, Zhang X et al. Risk factors for mortality in anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Front Immunol. 2022;13:845365. doi: 10.3389/fimmu.2022.845365

[42]

Zhong R., Chen Q., Zhang X. et al. Risk factors for mortality in anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis // Frontiers in Immunology. 2022. Vol. 13. P. 845365. doi: 10.3389/fimmu.2022.845365

[43]

Dalmau J, Armangué T, Planagumà J et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models. Lancet Neurol. 2019;18(11):1045–1057. doi: 10.1016/S1474-4422(19)30244-3

[44]

Dalmau J., Armangué T., Planagumà J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models // The Lancet Neurology. 2019. Vol. 18. N. 11. P. 1045–1057. doi: 10.1016/S1474-4422(19)30244-3

[45]

Steiner J, Schiltz K, Bernstein HG, Bogerts B. Antineuronal antibodies against neurotransmitter receptors and synaptic proteins in schizophrenia: Current knowledge and clinical implications. CNS Drugs. 2015;29(3):197–206. doi: 10.1007/s40263-015-0233-3

[46]

Steiner J., Schiltz K., Bernstein H.G., Bogerts B. Antineuronal antibodies against neurotransmitter receptors and synaptic proteins in schizophrenia: Current knowledge and clinical implications // CNS Drugs. 2015. Vol. 29. P. 197–206. doi: 10.1007/s40263-015-0233-3

[47]

Von Rhein B, Wagner J, Widman G et al. Suspected antibody negative autoimmune limbic encephalitis: Outcome of immunotherapy. Acta Neurol Scand. 2017;135(1):134–141. doi: 10.1111/ane.12575

[48]

Von Rhein B., Wagner J., Widman G. et al. Suspected antibody negative autoimmune limbic encephalitis: Outcome of immunotherapy // Acta Neurologica Scandinavica. 2017. Vol. 135. N. 1. P. 134–141. doi: 10.1111/ane.12575

[49]

Ketheesan S, Bertram G, Adam R et al. Muddying the waters? A false positive case of autoimmune psychosis. Australas Psychiatry. 2021;29(3):278–281. doi: 10.1177/1039856220965041

[50]

Ketheesan S., Bertram G., Adam R. et al. Muddying the waters? A false positive case of autoimmune psychosis // Australasian Psychiatry. 2021. Vol. 29. N. 3. P. 278–281. doi: 10.1177/1039856220965041

[51]

Pollak TA, Vincent A, Iyegbe C et al. Relationship between serum NMDA receptor antibodies and response to antipsychotic treatment in first-episode psychosis. Biol Psychiatry. 2021;90(1):9–15. doi: 10.1016/j.biopsych.2020.11.014

[52]

Pollak T.A., Vincent A., Iyegbe C. et al. Relationship between serum NMDA receptor antibodies and response to antipsychotic treatment in first-episode psychosis // Biological Psychiatry. 2021. Vol. 90. N. 1. P. 9–15. doi: 10.1016/j.biopsych.2020.11.014

[53]

Ross EL, Becker JE, Linnoila JJ, Soeteman DI. Cost-effectiveness of routine screening for autoimmune encephalitis in patients with first-episode psychosis in the United States. J Clin Psychiatry. 2020;82(1):18761. doi: 10.4088/JCP.19m13168

[54]

Ross E.L., Becker J.E., Linnoila J.J., Soeteman D.I. Cost-effectiveness of routine screening for autoimmune encephalitis in patients with first-episode psychosis in the United States // The Journal of Clinical Psychiatry. 2020. Vol. 82. N. 1. P. 18761. doi: 10.4088/JCP.19m13168

[55]

Coffey MJ, Cooper JJ. Electroconvulsive therapy in anti-N-methyl-D-aspartate receptor encephalitis: A case report and review of the literature. J ECT. 2016;32(4):225–229. doi: 10.1097/YCT.0000000000000334

[56]

Coffey M.J., Cooper J.J.. Electroconvulsive therapy in anti-N-methyl-D-aspartate receptor encephalitis: A case report and review of the literature // The Journal of ECT. 2016. Vol. 32. N. 4. P. 225–229. doi: 10.1097/YCT.0000000000000334

[57]

Warren N, Grote V, O'Gorman C, Siskind D. Electroconvulsive therapy for anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: A systematic review of cases. Brain Stimul. 2019;12(2):329–334. doi: 10.1016/j.brs.2018.11.016

[58]

Warren N., Grote V., O'Gorman C., Siskind D. Electroconvulsive therapy for anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: A systematic review of cases // Brain Stimulation. 2019. Vol. 12. N. 2. P. 329–334. doi: 10.1016/j.brs.2018.11.016

[59]

Tochilov VA. O simptomatike pristupov atipichnogo affektivnogo psikhoza (obzor literatury). Obozrenie psikhiatrii i meditsinskoi psikhologii im VM Bekhtereva. 1994;4:55–69. (In Russ.)

[60]

Точилов В.А. О симптоматике приступов атипичного аффективного психоза (обзор литературы) // Обозрение психиатрии и медицинской психологии им. В.М. Бехтерева. 1994. №4. С. 55–69.

[61]

Holm J, Brus O, Båve U et al. Improvement of cycloid psychosis following electroconvulsive therapy. Nord J Psychiatry. 2017;71(6):405–410. doi: 10.1080/08039488.2017.1306579

[62]

Holm J., Brus O., Båve U. et al. Improvement of cycloid psychosis following electroconvulsive therapy // Nordic Journal of Psychiatry. 2017. Vol. 71. N. 6. P. 405–410. doi: 10.1080/08039488.2017.1306579

[63]

Ehrenreich H. Autoantibodies against the N-methyl-D-aspartate receptor subunit NR1: Untangling apparent inconsistencies for clinical practice. Front Immunol. 2017;8:181. doi: 10.3389/fimmu.2017.00181

[64]

Ehrenreich H. Autoantibodies against the N-methyl-D-aspartate receptor subunit NR1: Untangling apparent inconsistencies for clinical practice // Frontiers in Immunology. 2017. Vol. 8. P. 181. doi: 10.3389/fimmu.2017.00181

[65]

Pan H, Steixner-Kumar AA, Seelbach A et al. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: A translational study from chronic life stress to brain injury. Mol Psychiatry. 2021;26(6):2471–2482. doi: 10.1038/s41380-020-0672-1

[66]

Pan H., Steixner-Kumar A.A., Seelbach A. et al. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: A translational study from chronic life stress to brain injury // Molecular Psychiatry. 2021. Vol. 26. N. 6. P. 2471–2482. doi: 10.1038/s41380-020-0672-1

[67]

Andrzejak E, Rabinovitch E, Kreye J et al. Patient-derived anti-NMDAR antibody disinhibits cortical neuronal networks through dysfunction of inhibitory neuron output. J Neurosci. 2022;42(15):3253–3270. doi: 10.1523/JNEUROSCI.1689-21.2022

[68]

Andrzejak E., Rabinovitch E., Kreye J. et al. Patient-derived anti-NMDAR antibody disinhibits cortical neuronal networks through dysfunction of inhibitory neuron output //Journal of Neuroscience. 2022. Vol. 42. N. 15. P. 3253–3270. doi: 10.1523/JNEUROSCI.1689-21.2022

[69]

Nikkheslat N. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency. Brain Behav Immun Health. 2021;18:100383. doi: 10.1016/j.bbih.2021.100383

[70]

Nikkheslat N. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency // Brain, Behavior & Immunity-Health. 2021. Vol. 18. P. 100383. doi: 10.1016/j.bbih.2021.100383

[71]

Bhutta AT, Schmitz ML, Swearingen C et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: A pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 2012;13(3):328–337. doi: 10.1097/PCC.0b013e31822f18f9

[72]

Bhutta A.T., Schmitz M.L., Swearingen C. et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: A pilot randomized, double-blind, placebo-controlled trial // Pediatric Critical Care Medicine. 2012. Vol. 13. N. 3. P. 328–337. doi: 10.1097/PCC.0b013e31822f18f9

[73]

Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front Hum Neurosci. 2016;10:612. doi: 10.3389/fnhum.2016.00612

[74]

Li L., Vlisides P.E. Ketamine: 50 years of modulating the mind // Frontiers in Human Neuroscience. 2016. Vol. 10. P. 612. doi: 10.3389/fnhum.2016.00612

[75]

Breier A, Malhotra AK, Pinals DA et al. Association of Ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154(6):805–811. doi: 10.1176/ajp.154.6.805

[76]

Breier A., Malhotra A.K., Pinals D.A. et al. Association of Ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers // The American Journal of Psychiatry. 1997. Vol. 154. N. 6. P. 805–811. doi: 10.1176/ajp.154.6.805

[77]

Kadriu B, Greenwald M, Henter ID et al. Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Int J Neuropsychopharmacol. 2021;24(1):8–21. doi: 10.1093/ijnp/pyaa087

[78]

Kadriu B., Greenwald M., Henter I.D. et al. Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants // International Journal of Neuropsychopharmacology. 2021. Vol. 24. N. 1. P. 8–21. doi: 10.1093/ijnp/pyaa087

[79]

Rueda Carrillo L, Garcia KA, Yalcin N, Shah M. Ketamine and its emergence in the field of neurology. Cureus. 2022;14(7):e27389. doi: 10.7759/cureus.27389

[80]

Rueda Carrillo L., Garcia K.A., Yalcin N., Shah M. Ketamine and its emergence in the field of neurology // Cureus. 2022. Vol. 14. N. 7. e27389. doi: 10.7759/cureus.27389

[81]

Hirota K, Lambert DG. Ketamine: New uses for an old drug? Br J Anaesth. 2011;107(2):123–126. doi: 10.1093/bja/aer221

[82]

Hirota K., Lambert D.G. Ketamine: New uses for an old drug? // British Journal of Anaesthesia. 2011. Vol. 107. N. 2. P. 123–126. doi: 10.1093/bja/aer221

[83]

Hudetz JA, Pagel PS. Neuroprotection by Ketamine: A review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24(1):131–142. doi: 10.1053/j.jvca.2009.05.008

[84]

Hudetz J.A., Pagel P.S. Neuroprotection by Ketamine: A review of the experimental and clinical evidence // Journal of Cardiothoracic and Vascular Anesthesia. 2010. Vol. 24. N. 1. P. 131–142. doi: 10.1053/j.jvca.2009.05.008

[85]

Rosati A, De Masi S, Guerrini R. Ketamine for refractory status epilepticus: A systematic review. CNS Drugs. 2018;32(11):997–1009. doi: 10.1007/s40263-018-0569-6

[86]

Rosati A., De Masi S., Guerrini R. Ketamine for refractory status epilepticus: A systematic review // CNS Drugs. 2018. Vol. 32. P. 997–1009. doi: 10.1007/s40263-018-0569-6

[87]

Zacharias N, Musso F, Müller F et al. Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study. Hum Brain Mapp. 2020;41(1):107–119. doi: 10.1002/hbm.24791

[88]

Zacharias N., Musso F., Müller F. et al. Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study // Human Brain Mapping. 2020. Vol. 41. N. 1. P. 107–119. doi: 10.1002/hbm.24791

[89]

Duncan WC, Sarasso S, Ferrarelli F et al. Concomitant BDNF and sleep slow wave changes indicate Ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013;16(2):301–311. doi: 10.1017/S1461145712000545

[90]

Duncan W.C., Sarasso S., Ferrarelli F. et al. Concomitant BDNF and sleep slow wave changes indicate Ketamine-induced plasticity in major depressive disorder // International Journal of Neuropsychopharmacology. 2013. Vol. 16. N. 2. P. 301–311. doi: 10.1017/S1461145712000545

[91]

Jeannin-Mayer S, André-Obadia N, Rosenberg S et al. EEG analysis in anti-NMDA receptor encephalitis: Description of typical patterns. Clin Neurophysiol. 2019;130(2):289–296. doi: 10.1016/j.clinph.2018.10.017

[92]

Jeannin-Mayer S., André-Obadia N., Rosenberg S. et al. EEG analysis in anti-NMDA receptor encephalitis: Description of typical patterns // Clinical Neurophysiology. 2019. Vol. 130. N. 2. P. 289–296. doi: 10.1016/j.clinph.2018.10.017

[93]

Schmitt SE, Pargeon K, Frechette ES et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):1094–1100. doi: 10.1212/WNL.0b013e3182698cd8

[94]

Schmitt S.E., Pargeon K., Frechette E.S. et al. Extreme delta brush: A unique EEG pattern in adults with anti-NMDA receptor encephalitis // Neurology. 2012. Vol. 79. N. 11. P. 1094–1100. doi: 10.1212/WNL.0b013e3182698cd8

[95]

Averill LA, Fouda S, Murrough JW, Abdallah CG. Chronic stress pathology and Ketamine-induced alterations in functional connectivity in major depressive disorder: An abridged review of the clinical evidence. Adv Pharmacol. 2020;89:163–194. doi: 10.1016/bs.apha.2020.04.003

[96]

Averill L.A., Fouda S., Murrough J.W., Abdallah C.G. Chronic stress pathology and Ketamine-induced alterations in functional connectivity in major depressive disorder: an abridged review of the clinical evidence // Advances in Pharmacology. 2020. Vol. 89. P. 163–194. doi: 10.1016/bs.apha.2020.04.003

[97]

Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of Ketamine. Neuropharmacology. 2023;224:109335. doi: 10.1016/j.neuropharm.2022.109335

[98]

Deyama S., Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of Ketamine // Neuropharmacology. 2023. Vol. 224. P. 109335. doi: 10.1016/j.neuropharm.2022.109335

[99]

Hashimoto K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-Ketamine. Biochem Pharmacol. 2020;177:113935. doi: 10.1016/j.bcp.2020.113935

[100]

Hashimoto K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-Ketamine // Biochemical Pharmacology. 2020. Vol. 177. P. 113935. doi: 10.1016/j.bcp.2020.113935

[101]

Kang MJY, Hawken E, Vazquez GH. The mechanisms behind rapid antidepressant effects of Ketamine: A systematic review with a focus on molecular neuroplasticity. Front Psychiatry. 2022;13:860882. doi: 10.3389/fpsyt.2022.860882

[102]

Kang M.J.Y., Hawken E., Vazquez G.H. The mechanisms behind rapid antidepressant effects of Ketamine: A systematic review with a focus on molecular neuroplasticity // Frontiers in Psychiatry. 2022. Vol. 13. P. 860882. doi: 10.3389/fpsyt.2022.860882

[103]

Zhang F, Wang C, Lan X et al. Ketamine-induced hippocampal functional connectivity alterations associated with clinical remission in major depression. J Affect Disord. 2023;325:534–541. doi: 10.1016/j.jad.2023.01.003

[104]

Zhang F., Wang C., Lan X. et al. Ketamine-induced hippocampal functional connectivity alterations associated with clinical remission in major depression //Journal of Affective Disorders. 2023. Vol. 325. P. 534–541. doi: 10.1016/j.jad.2023.01.003

[105]

McIntyre RS, Rosenblat JD, Rodrigues NB et al. The effect of intravenous Ketamine on cognitive functions in adults with treatment-resistant major depressive or bipolar disorders: Results from the Canadian rapid treatment center of excellence (CRTCE). Psychiatry Res. 2021;302:113993. doi: 10.1016/j.psychres.2021.113993

[106]

McIntyre R.S., Rosenblat J.D., Rodrigues N.B. et al. The effect of intravenous Ketamine on cognitive functions in adults with treatment-resistant major depressive or bipolar disorders: Results from the Canadian rapid treatment center of excellence (CRTCE) // Psychiatry Research. 2021. Vol. 302. P. 113993. doi: 10.1016/j.psychres.2021.113993

[107]

Zheng W, Zhou YL, Liu WJ et al. Neurocognitive performance and repeated-dose intravenous Ketamine in major depressive disorder. J Affect Disord. 2019;246:241–247. doi: 10.1016/j.jad.2018.12.005

[108]

Zheng W., Zhou Y.L., Liu W.J. et al. Neurocognitive performance and repeated-dose intravenous Ketamine in major depressive disorder // Journal of Affective Disorders. 2019. Vol. 246. P. 241–247. doi: 10.1016/j.jad.2018.12.005

[109]

Kopra E, Mondelli V, Pariante C, Nikkheslat N. Ketamine's effect on inflammation and kynurenine pathway in depression: A systematic review. J Psychopharmacol. 2021;35(8):934–945. doi: 10.1177/02698811211026426

[110]

Kopra E., Mondelli V., Pariante C., Nikkheslat N. Ketamine’s effect on inflammation and kynurenine pathway in depression: A systematic review // Journal of Psychopharmacology. 2021. Vol. 35. N. 8. P. 934–945. doi: 10.1177/02698811211026426

[111]

Sukhram SD, Yilmaz G, Gu J. Antidepressant effect of Ketamine on inflammation-mediated cytokine dysregulation in adults with treatment-resistant depression: rapid systematic review. Oxid Med Cell Longev. 2022;2022:1061274. doi: 10.1155/2022/1061274

[112]

Sukhram S.D., Yilmaz G., Gu J. Antidepressant effect of Ketamine on inflammation-mediated cytokine dysregulation in adults with treatment-resistant depression: rapid systematic review // Oxidative Medicine and Cellular Longevity. 2022. Vol. 2022. P. 1061274. doi: 10.1155/2022/1061274

[113]

Tsai SJ, Kao CF, Su TP et al. Cytokine- and vascular endothelial growth factor-related gene-based genome-wide association study of low-dose Ketamine infusion in patients with treatment-resistant depression. CNS Drugs. 2023;37(3):243–253. doi: 10.1007/s40263-023-00989-7

[114]

Tsai S.J., Kao C.F., Su T.P. et al. Cytokine-and vascular endothelial growth factor-related gene-based genome-wide association study of low-dose Ketamine infusion in patients with treatment-resistant depression // CNS Drugs. 2023. Vol. 37. N. 3. P. 243–253. doi: 10.1007/s40263-023-00989-7

[115]

De Kock M, Loix S, Lavand'homme P. Ketamine and peripheral inflammation. CNS Neurosci Ther. 2013;19(6):403–410. doi: 10.1111/cns.12104

[116]

De Kock M., Loix S., Lavand'homme P. Ketamine and peripheral inflammation // CNS Neuroscience & Therapeutics. 2013. Vol. 19. N. 6. P. 403–410. doi: 10.1111/cns.12104

[117]

Caddy C, Amit BH, McCloud TL et al. Ketamine and other glutamate receptor modulators for depression in adults. Cochrane Database of Systematic Reviews. 2015;9:CD011612. doi: 10.1002/14651858.CD011612.pub2

[118]

Caddy C., Amit B.H., McCloud T.L. et al. Ketamine and other glutamate receptor modulators for depression in adults // Cochrane Database of Systematic Reviews. 2015. Issue 9. Art. No. CD011612. doi: 10.1002/14651858.CD011612.pub2

[119]

Menon V, Varadharajan N, Faheem A, Andrade C. Ketamine vs electroconvulsive therapy for major depressive episode: A systematic review and meta-analysis. JAMA Psychiatry. 2023;80(6):639–642. doi: 10.1001/jamapsychiatry.2023.0562

[120]

Menon V., Varadharajan N., Faheem A., Andrade C. Ketamine vs electroconvulsive therapy for major depressive episode: A systematic review and meta-analysis // JAMA Psychiatry. 2023. Vol. 80. N. 6. P. 639–642. doi: 10.1001/jamapsychiatry.2023.0562

[121]

Du R, Han R, Niu K et al. The multivariate effect of Ketamine on PTSD: Systematic review and meta-analysis. Front Psychiatry. 2022;13:813103. doi: 10.3389/fpsyt.2022.813103

[122]

Du R., Han R., Niu K. et al. The multivariate effect of Ketamine on PTSD: Systematic review and meta-analysis // Frontiers in Psychiatry. 2022. Vol. 13. P. 813103. doi: 10.3389/fpsyt.2022.813103

[123]

Jones JL, Mateus CF, Malcolm RJ et al. Efficacy of Ketamine in the treatment of substance use disorders: A systematic review. Front Psychiatry. 2018;9:277. doi: 10.3389/fpsyt.2018.00277

[124]

Jones J.L., Mateus C.F., Malcolm R.J. et al. Efficacy of Ketamine in the treatment of substance use disorders: A systematic review // Frontiers in Psychiatry. 2018. Vol. 9. P. 277. doi: 10.3389/fpsyt.2018.00277

[125]

Duan W, Hu J, Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol. 2019;107:171–178. doi: 10.1016/j.yexmp.2019.02.004

[126]

Duan W., Hu J., Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor // Experimental and Molecular Pathology. 2019. Vol. 107. P. 171–178. doi: 10.1016/j.yexmp.2019.02.004

[127]

Li T, Yang J, Yang B et al. Ketamine inhibits ovarian cancer cell growth by regulating the lncRNA-PVT1/EZH2/p57 axis. Front Genet. 2021;11:597467. doi: 10.3389/fgene.2020.597467

[128]

Li T., Yang J., Yang B. et al. Ketamine inhibits ovarian cancer cell growth by regulating the lncRNA-PVT1/EZH2/p57 axis // Frontiers in Genetics. 2021. Vol. 11. P. 597467. doi: 10.3389/fgene.2020.597467

[129]

Kokkinou M, Ashok AH, Howes OD. The effects of Ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23(1):59–69. doi: 10.1038/mp.2017.190

[130]

Kokkinou M., Ashok A.H., Howes O.D. The effects of Ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders // Molecular Psychiatry. 2018. Vol. 23. N. 1. P. 59–69. doi: 10.1038/mp.2017.190

[131]

Sherman SJ, Estevez M, Magill AB, Falk T. Case reports showing a long-term effect of subanesthetic Ketamine infusion in reducing l-DOPA-induced dyskinesias. Case Rep Neurol. 2016;8(1):53–58. doi: 10.1159/000444278

[132]

Sherman S.J., Estevez M., Magill A.B., Falk T. Case reports showing a long-term effect of subanesthetic Ketamine infusion in reducing l-DOPA-induced dyskinesias // Case Reports in Neurology. 2016. Vol. 8. N. 1. P. 53–58. doi: 10.1159/000444278

[133]

Barbic D, Andolfatto G, Grunau B et al. Rapid agitation control with Ketamine in the emergency department: A blinded, randomized controlled trial. Ann Emerg Med. 2021;78(6):788–795. doi: 10.1016/j.annemergmed.2021.05.023

[134]

Barbic D., Andolfatto G., Grunau B. et al. Rapid agitation control with Ketamine in the emergency department: A blinded, randomized controlled trial // Annals of Emergency Medicine. 2021. Vol. 78. N. 6. P. 788–795. doi: 10.1016/j.annemergmed.2021.05.023

[135]

Cole JB, Moore JC, Nystrom PC et al. A prospective study of Ketamine versus haloperidol for severe prehospital agitation. Clin Toxicol (Phila). 2016;54(7):556–562. doi: 10.1080/15563650.2016.1177652

[136]

Cole J.B., Moore J.C., Nystrom P.C. et al. A prospective study of Ketamine versus haloperidol for severe prehospital agitation // Clinical Toxicology. 2016. Vol. 54. N. 7. P. 556–562. doi: 10.1080/15563650.2016.1177652

[137]

Ballard ED, Zarate CA Jr. The role of dissociation in Ketamine's antidepressant effects. Nat Commun. 2020;11(1):6431. doi: 10.1038/s41467-020-20190-4

[138]

Ballard E.D., Zarate C.A. Jr. The role of dissociation in Ketamine’s antidepressant effects // Nature communications. 2020. Vol. 11. N. 1. P. 6431. doi: 10.1038/s41467-020-20190-4

[139]

Chen G, Chen L, Zhang Y et al. Relationship between dissociation and antidepressant effects of esketamine nasal spray in patients with treatment-resistant depression. Int J Neuropsychopharmacol. 2022; 25(4):269–279. doi: 10.1093/ijnp/pyab084

[140]

Chen G., Chen L., Zhang Y. et al. Relationship between dissociation and antidepressant effects of esKetamine nasal spray in patients with treatment-resistant depression // International Journal of Neuropsychopharmacology. 2022. Vol. 25. N. 4. P. 269–279. doi: 10.1093/ijnp/pyab084

[141]

Lineham A, Avila-Quintero VJ, Bloch MH, Dwyer J. The relationship between acute dissociative effects induced by Ketamine and treatment response in adolescent patients with treatment-resistant depression. J Child Adolesc Psychopharmacol. 2023;33(1):20–26. doi: 10.1089/cap.2022.0086

[142]

Lineham A., Avila-Quintero V.J., Bloch M.H., Dwyer J. The relationship between acute dissociative effects induced by Ketamine and treatment response in adolescent patients with treatment-resistant depression // Journal of Child and Adolescent Psychopharmacology. 2023. Vol. 33. N. 1. P. 20–26. doi: 10.1089/cap.2022.0086

[143]

Johnson MW, Hendricks PS, Barrett FS, Griffiths RR. Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacol Ther. 2019;197:83–102. doi: 10.1016/j.pharmthera.2018.11.010

[144]

Johnson M.W., Hendricks P.S., Barrett F.S., Griffiths R.R. Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function // Pharmacology & Therapeutics. 2019. Vol. 197. P. 83–102. doi: 10.1016/j.pharmthera.2018.11.010

[145]

Mathai DS, Meyer MJ, Storch EA, Kosten TR. The relationship between subjective effects induced by a single dose of Ketamine and treatment response in patients with major depressive disorder: A systematic review. J Affect Disord. 2020;264:123–129. doi: 10.1016/j.jad.2019.12.023

[146]

Mathai D.S., Meyer M.J., Storch E.A., Kosten T.R. The relationship between subjective effects induced by a single dose of Ketamine and treatment response in patients with major depressive disorder: A systematic review // Journal of Affective Disorders. 2020. Vol. 264. P. 123–129. doi: 10.1016/j.jad.2019.12.023

[147]

Mello RP, Echegaray MVF, Jesus-Nunes AP et al. Trait dissociation as a predictor of induced dissociation by Ketamine or esKetamine in treatment-resistant depression: Secondary analysis from a randomized controlled trial. J Psychiatr Res. 2021;138:576–583. doi: 10.1016/j.jpsychires.2021.05.014

[148]

Mello R.P., Echegaray M.V.F., Jesus-Nunes A.P. et al. Trait dissociation as a predictor of induced dissociation by Ketamine or esKetamine in treatment-resistant depression: Secondary analysis from a randomized controlled trial // Journal of Psychiatric Research. 2021. Vol. 138. P. 576–583. doi: 10.1016/j.jpsychires.2021.05.014

[149]

Burnett AM, Salzman JG, Griffith KR et al. The emergency department experience with prehospital Ketamine: a case series of 13 patients. Prehosp Emerg Care. 2012;16(4):553-559. doi: 10.3109/10903127.2012.695434

[150]

Burnett A.M., Salzman J.G., Griffith K.R. et al. The emergency department experience with prehospital Ketamine: A case series of 13 patients // Prehospital Emergency Care. 2012. Vol. 16. N. 4. P. 553–559. doi: 10.3109/10903127.2012.695434

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1248KB)

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/