Is anti-NMDA receptor encephalitis real? I. Diagnostic challenges

Evgenii V. Snedkov , Igor A. Volchek , Ilia V. Lemeshev

Neurology Bulletin ›› 2023, Vol. LV ›› Issue (4) : 66 -78.

PDF (258KB)
Neurology Bulletin ›› 2023, Vol. LV ›› Issue (4) :66 -78. DOI: 10.17816/nb624104
Discussions
research-article

Is anti-NMDA receptor encephalitis real? I. Diagnostic challenges

Author information +
History +
PDF (258KB)

Abstract

After conducting a thorough analysis of clinical, neurophysiological, neuroimmunological, neurobiological, and neuropathological research findings, the authors of the review question on the validity of the anti-NMDA receptor encephalitis concept. The review highlights the significance of studying sanogenetic mechanisms in medicine and warns against hasty interpretations of neurobiological data without clinical knowledge.

Keywords

anti-NMDA receptor encephalitis / ANMDARE diagnosis / cycloid psychosis / catatonia in ANMDARE / sanogenetic mechanisms

Cite this article

Download citation ▾
Evgenii V. Snedkov, Igor A. Volchek, Ilia V. Lemeshev. Is anti-NMDA receptor encephalitis real? I. Diagnostic challenges. Neurology Bulletin, 2023, LV(4): 66-78 DOI:10.17816/nb624104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell LV. On a form of disease resembling some advanced stages of mania and fever, but so contradistinguished from any ordinarily observed or described combination of symptoms, as to render it probable that it may be an overlooked and hitherto unrecorded malady. Am J Insanity. 1849;6(2):97–127.

[2]

Bell L. On a form of disease resembling some advanced stages of mania and fever, but so contradistinguished from any ordinary observed or described combination of symptoms as to render it probable that it may be overlooked and hitherto unrecorded malady // Am. J. Insanity. 1849. Vol. 6. N. 2. P. 97–127.

[3]

Leongard K. Sistematika endogennykh psikhozov i ikh differentsirovannaya etiologiya. Per. s nem. pod red. A.S. Tiganova. M.: Prakticheskaya meditsina; 2010. 456 р. (In Russ)

[4]

Леонгард К. Систематика эндогенных психозов и их дифференцированная этиология. Пер. с нем. под ред. А.С. Тиганова. М.: Практическая медицина; 2010. 456 с.

[5]

Kleist K. Die klinische Stellung der Motilitätspsychosen. Zeitschrift für die gesamte Neurologie und Psychiatrie. 1911;3:914–917.

[6]

Kleist K. Die klinische Stellung der Motilitatspsychoden // Zeitschrift fur die gesamte Neurologie und Psychiatrie, Referate und Ergebnisse. 1911. Vol. 3. P. 914–917.

[7]

Franzek E, Beckmann H. Season-of-birth effect reveals the existence of etiologically different groups of schizophrenia. Biol Psychiatry. 1992;32(4):375–378. DOI: 10.1016/0006-3223(92)90042-x.

[8]

Franzek E., Beckmann H. Season-of-birth effect reveals the existence of etiologically different groups of schizophrenia // Biological Psychiatry. 1992. Vol. 32. N. 4. P. 375–378. DOI: 10.1016/0006-3223(92)90042-x.

[9]

Stöber G, Franzek E, Beckmann H. The role of maternal infectious diseases during pregnancy in the etiology of schizophrenia in offspring. European Psychiatry. 1992;7(4):147–152. DOI: 10.1017/S0924933800005241.

[10]

Stöber G., Franzek E., Beckmann H. The role of maternal infectious diseases during pregnancy in the etiology of schizophrenia in offspring // European Psychiatry. 1992. Vol. 7. N. 4. P. 147–152. DOI: 10.1017/S0924933800005241.

[11]

Stöber G, Kocher I, Franzek E, Beckmann H. First-trimester maternal gestational infection and cycloid psychosis. Acta Psychiatr Scand. 1997;96(5):319–324. DOI: 10.1111/j.1600-0447.1997.tb09923.x.

[12]

Stöber G., Kocher I., Franzek E. et al. First-trimester maternal gestational infection and cycloid psychosis // Acta Psychiatrica Scandinavica. 1997. Vol. 96. N. 5. P. 319–324. DOI: 10.1111/j.1600-0447.1997.tb09923.x.

[13]

Al-Haddad BJS, Oler E, Armistead B et al. The fetal origins of mental illness. Am J Obstet Gynecol. 2019;221(6):549–562. DOI: 10.1016/j.ajog.2019.06.013.

[14]

Al-Haddad B.J., Oler E., Armistead B. et al. The fetal origins of mental illness // American Journal of Obstetrics and Gynecology. 2019. Vol. 221. N. 6. P. 549–562. DOI: 10.1016/j.ajog.2019.06.013.

[15]

Massrali A, Adhya D, Srivastava DP et al. Virus-induced maternal immune activation as an environmental factor in the etiology of autism and schizophrenia. Front Neurosci. 2022;16:834058. DOI: 10.3389/fnins.2022.834058.

[16]

Massrali A., Adhya D., Srivastava D.P. et al. Virus-induced maternal immune activation as an environmental factor in the etiology of autism and schizophrenia // Frontiers in Neuroscience. 2022. Vol. 16. P. 834058. DOI: 10.3389/fnins.2022.834058.

[17]

Ratnayake U, Quinn T, Walker DW, Dickinson H. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci. 2013;7:180. DOI: 10.3389/fnins.2013.00180.

[18]

Ratnayake U., Quinn T., Walker D.W. et al. Cytokines and the neurodevelopmental basis of mental illness // Frontiers in Neuroscience. 2013. Vol. 7. P. 180. DOI: 10.3389/fnins.2013.00180.

[19]

Vasistha NA, Pardo-Navarro M, Gasthaus J et al. Maternal inflammation has a profound effect on cortical interneuron deve-lopment in a stage and subtype-specific manner. Mol Psychiatry. 2020;25(10):2313–2329. DOI: 10.1038/s41380-019-0539-5.

[20]

Vasistha N.A., Pardo-Navarro M., Gasthaus J. et al. Maternal inflammation has a profound effect on cortical interneuron deve-lopment in a stage and subtype-specific manner // Molecular Psychiatry. 2020. Vol. 25. N. 10. P. 2313–2329. DOI: 10.1038/s41380-019-0539-5.

[21]

Seckl JR, Holmes MC. Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6):479–488. DOI: 10.1038/ncpendmet0515.

[22]

Seckl J.R., Holmes M.C. Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal programming of adult pathophysiology // Nature Clinical Practice Endocrinology & Metabolism. 2007. Vol. 3. N. 6. P. 479–488. DOI: 10.1038/ncpendmet0515.

[23]

Lee YH, Cherkerzian S, Seidman LJ et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: Variation by severity of infection and offspring sex. Am J Psychiatry. 2020;177(1):66–75. DOI: 10.1176/appi.ajp.2019.18101206.

[24]

Lee Y.H., Cherkerzian S., Seidman L.J. et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: Variation by severity of infection and offspring sex // American Journal of Psychiatry. 2020. Vol. 177. N. 1. P. 66–75. DOI: 10.1176/appi.ajp.2019.18101206.

[25]

Allswede DM, Yolken RH, Buka SL et al. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: A longitudinal case-control study. The Lancet Psychiatry. 2020; 7(3):254–261. DOI: 10.1016/S2215-0366(20)30006-7.

[26]

Allswede D.M., Yolken R.H., Buka S.L. et al. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: A longitudinal case-control study // The Lancet Psychiatry. 2020. Vol. 7. N. 3. P. 254–261. DOI: 10.1016/S2215-0366(20)30006-7.

[27]

Cheslack-Postava K, Brown AS. Prenatal infection and schizophrenia: A decade of further progress. Schizophr Res. 2022;247:7–15. DOI: 10.1016/j.schres.2021.05.014.

[28]

Cheslack-Postava K., Brown A.S. Prenatal infection and schizophrenia: A decade of further progress // Schizophrenia Research. 2022. Vol. 247. P. 7–15. DOI: 10.1016/j.schres.2021.05.014.

[29]

Malhotra S, Sahoo S, Balachander S. Acute and transient psychotic disorders: Newer understanding. Curr Psychiatry Rep. 2019;21(11):113. DOI: 10.1007/s11920-019-1099-8.

[30]

Malhotra S., Sahoo S., Balachander S. Acute and transient psychotic disorders: Newer understanding // Current Psychiatry Reports. 2019. Vol. 21. P. 1–11. DOI: 10.1007/s11920-019-1099-8.

[31]

Dalmau J, Armangué T, Planagumà J et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 2019;18(11):1045–1057. DOI: 10.1016/S1474-4422(19)30244-3.

[32]

Dalmau J., Armangué T., Planagumà J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models // The Lancet Neurology. 2019. Vol. 18. N. 11. P. 1045–1057. DOI: 10.1016/S1474-4422(19)30244-3.

[33]

Davies C, Segre G, Estradé A et al. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis. Lancet Psychiatry. 2020;7(5):399–410. DOI: 10.1016/S2215-0366(20)30057-2.

[34]

Davies C., Segre G., Estradé A. et al. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis // The Lancet Psychiatry. 2020. Vol. 7. N. 5. P. 399–410. DOI: 10.1016/S2215-0366(20)30057-2.

[35]

Zimmer A, Youngblood A, Adnane A et al. Prenatal exposure to viral infection and neuropsychiatric disorders in offspring: A review of the literature and recommendations for the COVID-19 pandemic. Brain Behav Immun. 2021;91:756–770. DOI: 10.1016/j.bbi.2020.10.024.

[36]

Zimmer A., Youngblood A., Adnane A. et al. Prenatal exposure to viral infection and neuropsychiatric disorders in offspring: A review of the literature and recommendations for the COVID-19 pandemic // Brain, Behavior, and Immunity. 2021. Vol. 91. P. 756–770. DOI: 10.1016/j.bbi.2020.10.024.

[37]

Hansen N, Luedecke D, Malchow B et al. Autoantibody-associated psychiatric syndromes in children: Link to adult psychiatry. J Neural Transm. 2021;128:735–747. DOI: 10.1007/s00702-021-02354-8.

[38]

Hansen N., Luedecke D., Malchow B. et al. Autoantibody-associated psychiatric syndromes in children: Link to adult psychiatry // Journal of Neural Transmission. 2021. Vol. 128. N. 6. P. 735–747. DOI: 10.1007/s00702-021-02354-8.

[39]

Pröbstel AK, Zamvil SS. Do maternal anti-N-methyl-D-aspartate receptor antibodies promote development of neuropsychiatric disease in children? Ann Neurol. 2019;86(5):653–655. DOI: 10.1002/ana.25584.

[40]

Pröbstel A.K., Zamvil S.S. Do maternal anti-N-methyl-D-aspartate receptor antibodies promote development of neuropsychiatric disease in children? // Annals of Neurology. 2019. Vol. 86. N. 5. P. 653. DOI: 10.1002/ana.25584.

[41]

Tcakhilova SG, Kuznetsov VP, Khmelnitskaya AV et al. The influence of the immune status of the mother on fetal development and the health of the newborn (a review). Russian Journal of Human Reproduction. 2016;22(6):38–43. (In Russ). DOI: 10.17116/repro201622638-43.

[42]

Цахилова P.Г., Кузнецов В.П., Хмельницкая А.В. и др. Влияние иммунного статуса матери на развитие плода и здоровье новорождённого (обзор литературы) // Проблемы репродукции. 2016. Т. 22. №6. C. 38–43. DOI: 10.17116/repro201622638-43.

[43]

Prüss H. Autoantibodies in neurological disease. Nat Rev Immunol. 2021;21:798–813. DOI: 10.1038/s41577-021-00543-w.

[44]

Prüss H. Autoantibodies in neurological disease // Nature Reviews Immunology. 2021. Vol. 21. N. 12. P. 798–813. DOI: 10.1038/s41577-021-00543-w.

[45]

Ehrenreich H. Autoantibodies against N-methyl-D-aspartate receptor 1 in health and disease. Curr Opin Neurol. 2018;31(3):306–312. DOI: 10.1097/WCO.0000000000000546.

[46]

Ehrenreich H. Autoantibodies against N-methyl-D-aspartate receptor 1 in health and disease // Current Opinion in Neurology. 2018. Vol. 31. N. 3. P. 306. DOI: 10.1097/WCO.0000000000000546.

[47]

Gastaldi VD, Wilke JB, Weidinger CA et al. Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects. Brain Behav Immun. 2022;108:135–147. DOI: 10.1016/j.bbi.2022.10.016.

[48]

Gastaldi V.D., Wilke J.B., Weidinger C.A. et al. Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects // Brain, Behavior, and Immunity. 2023. Vol. 108. P. 135–147. DOI: 10.1016/j.bbi.2022.10.016.

[49]

Hansen N. NMDAR autoantibodies in psychiatric disease — an immunopsychiatric continuum and potential predisposition for disease pathogenesis. J Transl Autoimmun. 2022;5:100165. DOI: 10.1016/j.jtauto.2022.100165.

[50]

Hansen N. NMDAR autoantibodies in psychiatric disease — an immunopsychiatric continuum and potential predisposition for disease pathogenesis // Journal of Translational Autoimmunity. 2022. Vol. 25. P. 100165. DOI: 10.1016/j.jtauto.2022.100165.

[51]

Wilke JBH, Hindermann M, Berghoff SA et al. Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis. Mol Psychiatry. 2021;26:7746–7759. DOI: 10.1038/s41380-021-01238-3.

[52]

Wilke J.B., Hindermann M., Berghoff S.A. et al. Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis // Molecular Psychiatry. 2021. Vol. 26. N. 12. P. 7746–7759. DOI: 10.1038/s41380-021-01238-3.

[53]

Dahm L, Ott C, Steiner J et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol. 2014;76(1):82–94. DOI: 10.1002/ana.24189.

[54]

Dahm L., Ott C., Steiner J. et al. Seroprevalence of autoantibodies against brain antigens in health and disease // Annals of Neurology. 2014. Vol. 76. N. 1. P. 82–94. DOI: 10.1002/ana.24189.

[55]

Ehrenreich H. Autoantibodies against the N-methyl-D-aspartate receptor subunit NR1: Untangling apparent inconsistencies for clinical practice. Front Immunol. 2017;8:181. DOI: 10.3389/fimmu.2017.00181.

[56]

Ehrenreich H. Autoantibodies against the N-methyl-D-aspartate receptor subunit NR1: Untangling apparent inconsistencies for clinical practice // Frontiers in Immunology. 2017. Vol. 8. P. 181. DOI: 10.3389/fimmu.2017.00181.

[57]

Hopfner F, Müller SH, Steppat D et al. No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors. Transl Neurodegener. 2019;8:11. DOI: 10.1186/s40035-019-0153-0.

[58]

Hopfner F., Müller S.H., Steppat D. et al. No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors // Translational Neurodegeneration. 2019. Vol. 8. P. 1–7. DOI: 10.1186/s40035-019-0153-0.

[59]

Pan H, Oliveira B, Saher G et al. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry. 2019;24(10):1489–1501. DOI: 10.1038/s41380-017-0011-3.

[60]

Pan H., Oliveira B., Saher G. et al. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model // Molecular Psychiatry. 2019. Vol. 24. N. 10. P. 1489–1501. DOI: 10.1038/s41380-017-0011-3.

[61]

Pan H, Steixner-Kumar AA, Seelbach A et al. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: A translational study from chronic life stress to brain injury. Mol Psychiatry. 2021;26(6):2471–2482. DOI: 10.1038/s41380-020-0672-1.

[62]

Pan H., Steixner-Kumar A.A., Seelbach A. et al. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: A translational study from chronic life stress to brain injury // Molecular Psychiatry. 2021. Vol. 26. N. 6. P. 2471–2482. DOI: 10.1038/s41380-020-0672-1.

[63]

Pollak TA, Kempton MJ, Iyegbe C et al. Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis. Mol Psychiatry. 2021;26(6):2590–2604. DOI: 10.1038/s41380-020-00899-w.

[64]

Pollak T.A., Kempton M.J., Iyegbe C. et al. Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis // Molecular Psychiatry. 2021. Vol. 26. N. 6. P. 2590–2604. DOI: 10.1038/s41380-020-00899-w.

[65]

Lennox BR, Palmer-Cooper EC, Pollak T et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: A case-control study. Lancet Psychiatry. 2017;4(1):42–48. DOI: 10.1016/S2215-0366(16)30375-3.

[66]

Lennox B.R., Palmer-Cooper E.C., Pollak T. et al. Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case-control study // The Lancet Psychiatry. 2017. Vol. 4. N. 1. P. 42–48. DOI: 10.1016/S2215-0366(16)30375-3.

[67]

Dalmau J, Tüzün E, Wu H et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Annals of Neurology. 2007;61(1):25–36. DOI: 10.1002/ana.21050.

[68]

Dalmau J., Tüzün E., Wu H. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma // Annals of Neurology. 2007. Vol. 61. N. 1. P. 25–36. DOI: 10.1002/ana.21050.

[69]

Vitaliani R, Mason W, Ances B et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Annals of Neurology. 2005;58(4):594–604. DOI: 10.1002/ana.20614.

[70]

Vitaliani R., Mason W., Ances B. et al. Paraneoplastic encepha-litis, psychiatric symptoms, and hypoventilation in ovarian teratoma // Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2005. Vol. 58. N. 4. P. 594–604. DOI: 10.1002/ana.20614.

[71]

Dalmau J, Lancaster E, Martinez-Hernandez E et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74. DOI: 10.1016/S1474-4422(10)70253-2.

[72]

Dalmau J., Lancaster E., Martinez-Hernandez E. et al. Clini-cal experience and laboratory investigations in patients with anti-NMDAR encephalitis // The Lancet Neurology. 2011. Vol. 10. N. 1. P. 63–74. DOI: 10.1016/S1474-4422(10)70253-2.

[73]

Gabilondo I, Saiz A, Galán L et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology. 2011;77(10):996–999. DOI: 10.1212/WNL.0b013e31822cfc6b.

[74]

Gabilondo I., Saiz A., Galán L. et al. Analysis of relapses in anti-NMDAR encephalitis // Neurology. 2011. Vol. 77. N. 10. P. 996–999. DOI: 10.1212/WNL.0b013e31822cfc6b.

[75]

Armangue T, Spatola M, Vlagea A et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760–772. DOI: 10.1016/S1474-4422(18)30244-8.

[76]

Armangue T., Spatola M., Vlagea A. et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis // The Lancet Neurology. 2018. Vol. 17. N. 9. P. 760–772. DOI: 10.1016/S1474-4422(18)30244-8.

[77]

Phillips O, Tubre T, Lorenco H et al. Limbic encephalitis in a child with ovarian teratoma and influenza B. Case report and criti-cal review of the history of autoimmune anti-N-methyl-D-aspartate receptor encephalitis. J Neuroimmunol. 2021;360:577716. DOI: 10.1016/j.jneuroim.2021.577716.

[78]

Phillips O., Tubre T., Lorenco H. et al. Limbic encephalitis in a child with ovarian teratoma and influenza B. Case report and critical review of the history of autoimmune anti-N-methyl-D-aspartate receptor encephalitis // Journal of Neuroimmunology. 2021. Vol. 360. P. 577716. DOI: 10.1016/j.jneuroim.2021.577716.

[79]

Nabizadeh F, Balabandian M, Sodeifian F et al. Autoimmune encephalitis associated with COVID-19: A systematic review. Mult Scler Relat Disord. 2022;62:103795. DOI: 10.1016/j.msard.2022.103795.

[80]

Nabizadeh F., Balabandian M., Sodeifian F. et al. Autoimmune encephalitis associated with COVID-19: A systematic review // Multiple Sclerosis and Related Disorders. 2022. Vol. 62. P. 103795. DOI: 10.1016/j.msard.2022.103795.

[81]

Samim MM, Dhar D, Goyal S et al. AI-CoV study: autoimmune encephalitis associated with COVID-19 and its vaccines — a systematic review. J Clin Neurol. 2022;18(6):692–710. DOI: 10.3988/jcn.2022.18.6.692.

[82]

Samim M.M., Dhar D., Goyal S. et al. AI-CoV Study: Autoimmune encephalitis associated with COVID-19 and its vaccines — A systematic review // Journal of Clinical Neurology (Seoul, Korea). 2022. Vol. 18. N. 6. P. 692. DOI: 10.3988/jcn.2022.18.6.692.

[83]

Martin S, Azzouz B, Morel A, Trenque T. Anti-NMDA receptor encephalitis and vaccination: A disproportionality analysis. Front Pharmacol. 2022;13:940780. DOI: 10.3389/fphar.2022.940780.

[84]

Martin S., Azzouz B., Morel A. et al. Anti-NMDA receptor encephalitis and vaccination: A disproportionality analysis // Frontiers in Pharmacology. 2022. Vol. 13. P. 940780. DOI: 10.3389/fphar.2022.940780.

[85]

Valdoleiros SR, Calejo M, Marinho A et al. First report of concomitant cryptococcal meningitis and anti-NMDAR encephalitis. Brain Behav Immun Health. 2020;2:100036. DOI: 10.1016/j.bbih.2020.100036.

[86]

Valdoleiros S.R., Calejo M., Marinho A. et al. First report of concomitant cryptococcal meningitis and anti-NMDAR encephalitis // Brain, Behavior & Immunity-Health. 2020. Vol. 2. P. 100036. DOI: 10.1016/j.bbih.2020.100036.

[87]

Zrzavy T, Endmayr V, Bauer J et al. Neuropathological variability within a spectrum of NMDAR-encephalitis. Ann Neurol. 2021;90(5):725–737. DOI: 10.1002/ana.26223.

[88]

Zrzavy T., Endmayr V., Bauer J. et al. Neuropathological variability within a spectrum of NMDAR-encephalitis // Annals of Neurology. 2021. Vol. 90. N. 5. P. 725–737. DOI: 10.1002/ana.26223.

[89]

Doden T, Sekijima Y, Ikeda J et al. Postpartum Anti-N-methyl-D-aspartate receptor encephalitis: A case report and lite-rature review. Intern Med. 2017;56(3):357–362. DOI: 10.2169/internalmedicine.56.7442.

[90]

Doden T., Sekijima Y., Ikeda J. et al. Postpartum anti-N-methyl-D-aspartate receptor encephalitis: A case report and lite-rature review // Internal Medicine. 2017. Vol. 56. N. 3. P. 357–362. DOI: 10.2169/internalmedicine.56.7442.

[91]

Konen FF, Schwenkenbecher P, Jendretzky KF et al. Severe anti-N-methyl-D-aspartate receptor encephalitis under immunosuppression after liver transplantation. Front Neurol. 2019; 10:987. DOI: 10.3389/fneur.2019.00987.

[92]

Konen F.F., Schwenkenbecher P., Jendretzky K.F. et al. Severe anti-N-methyl-D-aspartate receptor encephalitis under immunosuppression after liver transplantation // Frontiers in Neurology. 2019. Vol. 10. P. 987. DOI: 10.3389/fneur.2019.00987.

[93]

Obi CA, Thompson E, Mordukhaev L et al. Anti-N-methyl-D-aspartate receptor encephalitis triggered by emotional stress. Proc (Bayl Univ Med Cent). 2019;32(4):605–606. DOI: 10.1080/08998280.2019.1647713.

[94]

Obi C.A., Thompson E., Mordukhaev L. et al. Anti-N-methyl-D-aspartate receptor encephalitis triggered by emotional stress // Baylor University Medical Center Proceedings. Taylor & Francis, 2019. Vol. 32. N. 4. P. 605–606. DOI: 10.1080/08998280.2019.1647713.

[95]

Auriti C, De Rose DU, Santisi A et al. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis. 2021;1867(10):166198. DOI: 10.1016/j.bbadis.2021.166198.

[96]

Auriti C., De Rose D.U., Santisi A. et al. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus // Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021. Vol. 1867. N. 10. P. 166198. DOI: 10.1016/j.bbadis.2021.166198.

[97]

Teller J, Jung C, Wilke JBH et al. Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia. Brain Behav Immun Health. 2022;24:100494. DOI: 10.1016/j.bbih.2022.100494.

[98]

Teller J., Jung C., Wilke J.B. et al. Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia // Brain, Behavior & Immunity-Health. 2022. Vol. 24. P. 100494. DOI: 10.1016/j.bbih.2022.100494.

[99]

Kayser MS, Titulaer MJ, Gresa-Arribas N, Dalmau J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis. JAMA Neurol. 2013;70(9):1133–1139. DOI: 10.1001/jamaneurol.2013.3216.

[100]

Kayser M.S., Titulaer M.J., Gresa-Arribas N. et al. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-D-aspartate receptor encephalitis // JAMA Neurology. 2013. Vol. 70. N. 9. P. 1133–1139. DOI: 10.1001/jamaneurol.2013.3216.

[101]

Wu CY, Wu JD, Chen CC. The association of ovarian teratoma and anti-N-methyl-D-aspartate receptor encephalitis: An updated integrative review. Int J Mol Sci. 2021;22(20):10911. DOI: 10.3390/ijms222010911.

[102]

Wu C.Y., Wu J.D., Chen C.C. The association of ovarian teratoma and Anti-N-Methyl-D-Aspartate receptor encephalitis: An updated integrative review // International Journal of Mole-cular Sciences. 2021. Vol. 22. N. 20. P. 10911. DOI: 10.3390/ijms222010911.

[103]

Vasenina EE, Levin OS, Gankina OA et al. Autoimmune anti-NMDA-R encephalitis. Zhurnal Nevrologii i Psikhiatrii. 2017;117(2):110-116. (In Russ). DOI: 10.17116/jnevro201711721110-116.

[104]

Васенина Е.Е., Левин О.P., Ганькина О.А. и др. Аутоиммунный энцефалит с антителами к NMDA-рецепторам // Журнал неврологии и психиатрии. 2017. T. 117. №2. C. 110–116. DOI: 10.17116/jnevro201711721110-116.

[105]

Shmukler AB, Ivashkina AA, Murashko AA. A case of anti-NMDA-receptor encephalitis presenting as febrile catatonia. Bulletin of Siberian Medicine. 2019;18(4):266–272. DOI: 10.20538/1682-0363-2019-4-266-272.

[106]

Шмуклер А.Б., Ивашкина А.А., Мурашко А.А. Случай анти-NMDA-рецепторного энцефалита с клинической картиной фебрильной кататонии // Бюллетень сибирской медицины. 2019. T. 18. №4. C. 266–272. DOI: 10.20538/1682-0363-2019-4-266-272.

[107]

Giné Servén E, Boix Quintana E, Martínez Ramírez M et al. Cycloid psychosis as a psychiatric expression of anti-NMDAR encephalitis. A systematic review of case reports accomplished with the authors’ cooperation. Brain Behav. 2021;11(2):e01980. DOI: 10.1002/brb3.1980.

[108]

Giné Servén E., Boix Quintana E., Martínez Ramírez M. et al. Cycloid psychosis as a psychiatric expression of anti-NMDAR encephalitis. A systematic review of case reports accomplished with the authors’ cooperation // Brain and Behavior. 2021. Vol. 11. N. 2. P. e01980. DOI: 10.1002/brb3.1980.

[109]

Komagamine T, Kanbayashi T, Suzuki K et al. “Atypical psychoses” and anti-NMDA receptor encephalitis: A review of literature in the mid-twentieth century. Psychiatry Clin Neurosci. 2022;76(2):62–63. DOI: 10.1111/pcn.13317.

[110]

Komagamine T., Kanbayashi T., Suzuki K. et al. “Atypical psychoses” and anti-NMDA receptor encephalitis: A review of literature in the mid-twentieth century // Psychiatry and Cli-nical Neurosciences. 2022. Vol. 76. N. 2. P. 62. DOI: 10.1111/pcn.13317.

[111]

Foucher JR, Bartsch AJ, Mainberger O et al. Parakinesia: A Delphi consensus report. Schizophr Res. 2022:S0920-9964(22)00366-8. DOI: 10.1016/j.schres.2022.09.024.

[112]

Foucher J.R., Bartsch A.J., Mainberger O. et al. Parakinesia: A Delphi consensus report // Schizophrenia Research. 2022. Р. S0920-9964(22)00366-8. DOI: 10.1016/j.schres.2022.09.024.

[113]

Giné Servén E, Boix Quintana E, Guanyabens Buscà N et al. Considerations of psychotic symptomatology in anti-NMDA encephalitis: Similarity to cycloid psychosis. Clin Case Rep. 2019;7(12):2456–2461. DOI: 10.1002/ccr3.2522.

[114]

Giné Servén E., Boix Quintana E., Guanyabens Buscà N. et al. Considerations of psychotic symptomatology in anti-NMDA encephalitis: Similarity to cycloid psychosis // Clinical Case Reports. 2019. Vol. 7. N. 12. P. 2456–2461. DOI: 10.1002/ccr3.2522.

[115]

Warren N, O’Gorman C, McKeon G et al. Psychiatric management of anti-NMDAR encephalitis: A cohort analysis. Psychol Med. 2021;51(3):435–440. DOI: 10.1017/S0033291719003283.

[116]

Warren N., O’Gorman C., McKeon G. et al. Psychiatric management of anti-NMDAR encephalitis: A cohort analysis // Psychological Medicine. 2021. Vol. 51. N. 3. P. 435–440. DOI: 10.1017/S0033291719003283.

[117]

McKeon GL, Robinson GA, Ryan AE et al. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review. J Clin Exp Neuropsychol. 2018;40(3):234–252. DOI: 10.1080/13803395.2017.1329408.

[118]

McKeon G.L., Robinson G.A., Ryan A.E. et al. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review // Journal of Clinical and Experimental Neuropsychology. 2018. Vol. 40. N. 3. P. 234–252. DOI: 10.1080/13803395.2017.1329408.

[119]

Flanagan EP, Geschwind MD, Lopez-Chiriboga AS et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 2023;80(1):30–39. DOI: 10.1001/jamaneurol.2022.4251.

[120]

Flanagan E.P., Geschwind M.D., Lopez-Chiriboga A.S. et al. Autoimmune encephalitis misdiagnosis in adults // JAMA Neurology. 2023. Vol. 80. N. 1. P. 30–39. DOI: 10.1001/jamaneurol.2022.4251.

[121]

Hébert J, Muccilli A, Wennberg RA. Autoimmune encephalitis and autoantibodies: A review of clinical implications. J Appl Lab Med. 2022;7(1):81–98. DOI: 10.1093/jalm/jfab102.

[122]

Hébert J., Muccilli A., Wennberg R.A. et al. Autoimmune encephalitis and autoantibodies: A review of clinical implications // The Journal of Applied Laboratory Medicine. 2022. Vol. 7. N. 1. P. 81–98. DOI: 10.1093/jalm/jfab102.

[123]

Lee S, Kim HD, Lee JS et al. Clinical features and treatment outcomes of seronegative pediatric autoimmune encepha-litis. J Clin Neurol. 2021;17(2):300–306. DOI: 10.3988/jcn.2021.17.2.300.

[124]

Lee S., Kim H.D., Lee J.S. et al. Clinical features and treatment outcomes of seronegative pediatric autoimmune encephalitis // Journal of Clinical Neurology (Seoul, Korea). 2021. Vol. 17. N. 2. P. 300. DOI: 10.3988/jcn.2021.17.2.300.

[125]

Hayashi K, Hikiji W, Makino Y, Suzuki H. An autopsy case of suspected anti-N-methyl-D-aspartate receptor encephalitis. J Forensic Sci Med. 2019;5:213–216. DOI: 10.4103/jfsm.jfsm_59_18.

[126]

Hayashi K., Hikiji W., Makino Y. et al. An autopsy case of suspected anti-N-methyl-D-aspartate receptor encephalitis // Journal of Forensic Science and Medicine. 2019. Vol. 5. N. 4. P. 213–216. DOI: 10.4103/jfsm.jfsm_59_18.

[127]

Tüzün E, Zhou L, Baehring JM et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 2009;118(6):737–743. DOI: 10.1007/s00401-009-0582-4.

[128]

Tüzün E., Zhou L., Baehring J.M. et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma // Acta Neuropathologica. 2009. Vol. 118. P. 737–743. DOI: 10.1007/s00401-009-0582-4.

[129]

Dao LM, Machule ML, Bacher P et al. Decreased inflammatory cytokine production of antigen-specific CD4+ T cells in NMDA receptor encephalitis. J Neurol. 2021;268(6):2123–2131. DOI: 10.1007/s00415-020-10371-y.

[130]

Dao L.M., Machule M.L., Bacher P. et al. Decreased inflammatory cytokine production of antigen-specific CD4+ T cells in NMDA receptor encephalitis // Journal of Neurology. 2021. Vol. 268. P. 2123–2131. DOI: 10.1007/s00415-020-10371-y.

[131]

Gillinder L, Warren N, Hartel G et al. EEG findings in NMDA encephalitis — A systematic review. Seizure. 2019;65:20–24. DOI: 10.1016/j.seizure.2018.12.015.

[132]

Gillinder L., Warren N., Hartel G. et al. EEG findings in NMDA encephalitis — a systematic review // Seizure. 2019. Vol. 65. P. 20–24. DOI: 10.1016/j.seizure.2018.12.015.

[133]

Faraguna U, Vyazovskiy VV, Nelson AB et al. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci. 2008;28(15):4088–40895. DOI: 10.1523/JNEUROSCI.5510-07.2008.

[134]

Faraguna U., Vyazovskiy V.V., Nelson A.B. et al. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep // Journal of Neuroscience. 2008. Vol. 28. N. 15. P. 4088–4095. DOI: 10.1523/JNEUROSCI.5510-07.2008.

[135]

Harmony T. The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci. 2013;7:83. DOI: 10.3389/fnint.2013.00083.

[136]

Harmony T. The functional significance of delta oscillations in cognitive processing // Frontiers in Integrative Neuroscience. 2013. Vol. 7. P. 83. DOI: 10.3389/fninVol.2013.00083.

[137]

Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–685. DOI: 10.1126/science.8235588.

[138]

Steriade M., McCormick D.A., Sejnowski T.J. Thalamocortical oscillations in the sleeping and aroused brain // Science. 1993. Vol. 262. N. 5134. P. 679–685. DOI: 10.1126/science.8235588.

[139]

Nabizadeh F, Ramezannezhad E, Sardaripour A et al. [18F] FDG brain PET and clinical symptoms in different autoantibodies of autoimmune encephalitis: A systematic review. Neurol Sci. 2022;43(8):4701–4718. DOI: 10.1007/s10072-022-06094-9.

[140]

Nabizadeh F., Ramezannezhad E., Sardaripour A. et al. [18F] FDG brain PET and clinical symptoms in different autoantibodies of autoimmune encephalitis: A systematic review // Neurological Sciences. 2022. Vol. 43. N. 8. P. 4701–4718. DOI: 10.1007/s10072-022-06094-9.

[141]

Jabs BE, Pfuhlmann B, Bartsch AJ, Cetkovich-Bakmas MG, Stöber G. Cycloid psychoses — from clinical concepts to biologi-cal foundations. J Neural Transm (Vienna). 2002;109:907–919. DOI: 10.1007/s007020200074.

[142]

Jabs B.E., Pfuhlmann B., Bartsch A.J. et al. Cycloid psychoses — from clinical concepts to biological foundations // Journal of Neural Transmission. 2002. Vol. 109. P. 907–919. DOI: 10.1007/s007020200074.

[143]

Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology. 2011;77(6):589–593. DOI: 10.1212/WNL.0b013e318228c136.

[144]

Martinez-Hernandez E., Horvath J., Shiloh-Malawsky Y. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis // Neurology. 2011. Vol. 77. N. 6. P. 589–593. DOI: 10.1212/WNL.0b013e318228c136.

[145]

Dietl HW, Pulst SM, Engelhardt P, Mehraein P. Paraneoplastic brainstem encephalitis with acute dystonia and central hypoventilation. J Neurol. 1982;227(4):229–238. DOI: 10.1007/BF00313390.

[146]

Dietl H.W., Pulst S.M., Engelhardt P. et al. Paraneoplastic brainstem encephalitis with acute dystonia and central hypoventilation // Journal of Neurology. 1982. Vol. 227. P. 229–238. DOI: 10.1007/BF00313390.

[147]

Lu T, Cai W, Qiu W et al. Brainstem and vestibulocochlear nerve involvement in relapsing-remitting anti-NMDAR encephalitis. Neurol Sci. 2016;37(1):149–151. DOI: 10.1007/s10072-015-2385-9.

[148]

Lu T., Cai W., Qiu W. et al. Brainstem and vestibulocochlear nerve involvement in relapsing — remitting anti-NMDAR encephalitis // Neurological Sciences. 2016. Vol. 37. P. 149–151. DOI: 10.1007/s10072-015-2385-9.

[149]

Schäbitz WR, Rogalewski A, Hagemeister C, Bien CG. VZV brainstem encephalitis triggers NMDA receptor immunoreaction. Neurology. 2014;83(24):2309–2311. DOI: 10.1212/WNL.0000000000001072.

[150]

Schäbitz W.R., Rogalewski A., Hagemeister C. et al. VZV brainstem encephalitis triggers NMDA receptor immunoreaction // Neurology. 2014. Vol. 83. N. 24. P. 2309–2311. DOI: 10.1212/WNL.0000000000001072.

[151]

Wang HY, Li T, Li XL et al. Anti-N-methyl-D-aspartate receptor encephalitis mimics neuroleptic malignant syndrome: Case report and literature review. Neuropsychiatr Dis Treat. 2019;15:773–778. DOI: 10.2147/NDT.S195706.

[152]

Wang H.Y., Li T., Li X.L. et al. Anti-N-methyl-D-aspartate receptor encephalitis mimics neuroleptic malignant syndrome: Case report and literature review // Neuropsychiatric Disease and Treatmen. 2019. Vol. 2019. P. 773–778. DOI: 10.2147/NDVol.S195706.

[153]

Young D. The NMDA receptor antibody paradox: A possible approach to developing immunotherapies targeting the NMDA receptor. Front Neurol. 2020;11:635. DOI: 10.3389/fneur.2020.00635.

[154]

Young D. The NMDA receptor antibody paradox: A possible approach to developing immunotherapies targeting the NMDA receptor // Frontiers in Neurology. 2020. Vol. 11. P. 635. DOI: 10.3389/fneur.2020.00635.

[155]

Bacherikov NE, Petlenko VP, Shcherbina EA. Filosofskie voprosy psikhiatrii. Kiev: Zdorovya; 1985. 192 с. (In Russ).

[156]

Бачерников Н.Е., Петленко В.П., Щербина Е.А. Философские вопросы психиатрии. Киев: Здоровья; 1985. 192 с.

[157]

Nuller YuL, Mikhalenko IN. Affektivnye psikhozy. Leningrad: Meditsina; 1988. 264 p. (In Russ.)

[158]

Нуллер Ю.Л., Михаленко И.Н. Аффективные психозы. Ленинград: Медицина; 1988. 264 с.

[159]

Smirnov VK. Psikhogigiena i psikhicheskoe zdorov’e. In: Psikhicheskoe zdorov’e i pogranichnye sostoyaniya. Sb. nauch. tr. Pod obshch. red. V.K. Smirnova. Gor’kii: GMI; 1983:38–58. (In Russ)

[160]

Смирнов В.К. Психогигиена и психическое здоровье. В сб.: Психическое здоровье и пограничные состояния. Сб. науч. тр. / Под общ. ред. В.К. Смирнова. Горький: ГМИ; 1983. с. 38–58.

RIGHTS & PERMISSIONS

Eco-Vector

PDF (258KB)

98

Accesses

0

Citation

Detail

Sections
Recommended

/