HUMAN PELVIS BUTTRESS SYSTEM AND THE ROLE OF SKELETAL MUSCLES IN ITS FORMATION (REVIEW ARTICLE)
I. V. Gaivoronsky , A. A. Rodionov , G. I. Nichiporuk , I. A. Goryacheva , M. G. Gaivoronskaya
Morphology ›› 2020, Vol. 158 ›› Issue (4-5) : 93 -100.
HUMAN PELVIS BUTTRESS SYSTEM AND THE ROLE OF SKELETAL MUSCLES IN ITS FORMATION (REVIEW ARTICLE)
In connection with the vertical position of the body, such mechanical forces as body weight, viscera, intra-abdominal pressure, traction of muscles, tendons and ligament apparatus act on the human pelvis. The bone structures - the internal plates of the spongy substance and the end plates of the compact substance, the highest concentration of which occurs at the sites of compression and tension - are modeled under the influence of these forces. The aforementioned places of increased bone density in the composition of the bone pelvis are its buttresses. The connecting foundation of the buttress system of the pelvis is the sacrum, perceiving the effects of mechanical forces and transmitting them to the pelvic bones. The authors distinguished the following bone buttresses: 1 - lumbo-sacral-iliac-femoral; 2 - lumbo-sacral-iliac-sciatic; 3 - sacro-sciatic; 4 - sacro-femoral; 5 - sacro-iliac-pubical. It is necessary to consider buttresses of the pelvis from the position of arched structures, with the obligatory interaction of the contralateral sides. Arched structures formed by the lumbo-sacral-iliac-femoral, sacro-femoral and sacro-iliac-pubic buttresses function when the body is in vertical position, and the lumbo-sacral-iliac-sciatic and sacroiliac buttresses when the body is in seated position. Skeletal muscles attached to the bones of the pelvis also play an important role in the formation and maintenance of bone buttresses. They not only change its bone structure, but during their contraction also transmit tension to other bones, forming muscle buttress systems. In the work, the presence of the following musculoskeletal buttresses is proved: 1 - the external and internal ileo-femoral; 2 - external and internal obturator-femoral; 3 - pubic-sciaticfemoral-tibial; 4 - sciatic-tibial-fibular buttresses. It is shown that the pelvis is the most important part of the human musculoskeletal system and the stabilization ring for the free lower limb.
pelvic bone buttress / musculoskeletal buttress / arched pelvic structures / pelvic muscles / femur muscles / pelvic bone and muscle complex
| [1] |
Аникин Ю. М. Биомеханические аспекты организации скелета конечностей человека // Российский журнал биомеханики. 2000. Т. 4, № 1. С. 80-83. |
| [2] |
Аникин Ю. М., Колесников Л. Л. Функциональная анатомия и биомеханика позвоночного столба человека // Российские морфологические ведомости. 1997. № 1(6). С. 26-32. |
| [3] |
Аникин Ю. М., Колесников Л. Л., Кузнецов Л. Е., Цыбулькин А. Г. Контрфорсы костей таза человека // Русский журнал биомеханики. 1999. Т. 3, № 3. С. 78-81. |
| [4] |
Капанджи А. И. Нижняя конечность. Функциональная анатомия. М.: Эксмо. 2017. Т. 2. 352 с. |
| [5] |
Кочетков А. Г., Сорокин А. П., Стельникова И. Г. Общая анатомия опорных структур человеческого организма. Нижний Новгород: НГМИ, 1992. 89 с. |
| [6] |
Лесгафт П. Ф. Основы теоретической анатомии. СПб.: Общ-во худож. печати, 1905. Ч. 1. 351 с. |
| [7] |
Новосельцев С. В., Симкин Д. Б. Крестец. Анатомо-функциональные взаимосвязи и роль в биомеханике тела человека // Мануальная терапия. 2008. № 3. С. 89-99. |
| [8] |
Орел А. М. Модели напряженной целостности (Tensegrityмодели) в биомеханике позвоночника // В помощь практическому врачу. 2009. № 4 (36). С. 84-96. |
| [9] |
Серов М. А., Родионов А. А., Шатохин Н. В. Расчет нагрузки в области тазового кольца. Математическая морфология // Электронный математический медико-биологический журнал. 2006. Т. 9, вып. 4. С. 1-5.URL:http // www.Smolensk.ru/user/(sgma)/(MMORPH)12-html |
| [10] |
Харрисон Дж., Уайнер Дж., Таннер Дж. Биология человека. М.: Мир, 1968. 440 с. |
| [11] |
Aiello L., Dean C. An Introduction to human evolutionary anatomy. San Diego: Academic Press, 1990. 608 p. |
| [12] |
Churchill S. E., Vansickle C. Pelvic morphology in homo erectus and early homo // Anat. Rec. 2017. Vol. 300. P. 964-977. |
| [13] |
Cunningham C. A., Black S. M. Anticipating bipedalism: trabecular organization in the newborn ilium // J. Anat. 2009. Vol. 214. P. 817-829. |
| [14] |
Cunningham C. A., Black S. M. The neonatal ilium-metaphyseal drivers and vascular passengers // Anat. Rec. (Hoboken). 2010. Vol. 293. P. 1297-1309. |
| [15] |
Dalsrta M., Huiskes R., van Erning L. Development and validation of a three-dimensional finite element model of the pelvic bone // J. Biomech. Engin. 1995. Vol. 117. P. 272-278. |
| [16] |
Dalstra M., Huiskes R. Load transfer across the pelvic bone // J. Biomech. 1995. Vol. 28. P. 715-724. |
| [17] |
Delaere O., Kok V., Nyssen-Behets C., Dhem A. Ossification of the human fetal ileum // Acta Anat. 1992. Vol. 143. P. 330-334. |
| [18] |
Deguette C., Ramond-Roquin A., Rougé-Maillart C. Relationships between age and microarchitectural descriptors of iliac trabecular bone determined by microCT // Morphologie. 2017. Vol. 101. P. 64-70. |
| [19] |
Dostal W. F., Andrews J. G. A three-dimensional biomechanical model of hip musculature // J. Biomech. 1981. Vol. 14. P. 802-812. |
| [20] |
Easley D. C., Abramowith S. D., Moalli P.A. Female pelvic floor biomechanics: bridging the gap // Cuzz Opin. Urol. 2017. Vol. 27 (3). P. 262-267. |
| [21] |
Ferre J. C., Barbin J. Y., Helary J. L. The mandible, an overhanging mechanically suspended structure. Considerations on the system of attachment and servo-command of the mandible // Anat. Clin. 1984. Vol. 6. P. 3-10. |
| [22] |
Glorieux F. H., Travers R., Taylor A. et al. Normative data for iliac bone histomorphometry in growing children // Bone. 2000. Vol. 26. P. 103-109. |
| [23] |
Graig A., Black S. M. Anticipating bipedalism: trabecular organization in the newborn ileum // J. Anat. 2009. Vol. 214. P. 817-829. |
| [24] |
Hammond A. S., Almecija S. Lower ilium evolution in Apes and Hominins // Anatom. Rec. 2017. Vol. 300. P. 828-844. |
| [25] |
Hao Z., Wan C., Gao X., Si T. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: A three-dimensional finite element model // J. Biomech. Engin. 2011. Vol. 133. P. 101006-101009. |
| [26] |
Hogervorst T., Bouma H. W., de Vos J. Evolution of the hip and pelvis // Acta Osthop. 2009. Vol. 80. Suppl. 336. P. 1-39. |
| [27] |
Holm N. J. The internal stress pattern of the os coxae // Acta Orthop. Scand. 1980. Vol. 51. P. 421-428. |
| [28] |
Keaveny T. M., Morgan E. F., Niebur G. L., Yeh O. C. Biomechanics of trabecular bone // Ann. Rev. Biomed. Eng. 2001. Vol. 3. P. 307-333. |
| [29] |
Leung A. S., Gordon L. M., Skrinskas T. et al. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model // Proc. Inst. Mech. Eng. 2009. № 223 (8). P. 965-979. |
| [30] |
Lewton K. L. Invitro bone strain distributions in a sample of primate pelvis // J. Anat. 2015. Vol. 226, № 5. P. 458-477. |
| [31] |
Majumder S., Roychowdhury A., Pal. S. Variations of stress in pelvic bone during normal walking, considering all active muscles // Thends Biomater Artif. Organs. 2004. Vol. 17. P. 48-53. |
| [32] |
Pedersen D. R., Brand R. A., Davy D. T. Pelvic muscle and acetabular contact forces during gait // J. Biomech. 1997. Vol. 30. P. 959-965. |
| [33] |
Putz R., Müller-Gerbl. Anatomische Besondezheiten des Beckenrings // Unfallchirurg. 1992. Vol. 95. P. 164-167. |
| [34] |
Ripamonti U. Soluble osteogenic molecular signal and the induction of bone formation // Biomaterials. 2006. Vol. 27. P. 807-822. |
| [35] |
Rook L., Bondioli L., Kohles M. et al. Oreopithecus was a bipedal ape after all: Evidence from the iliac cancellous architecture // Proc. Natl. Acad. Sci. 1999. Vol. 96. P. 8795-8799. |
| [36] |
Ryan T.M., Ketcham R. A. Femoral head trabecular bone structure in two omomyid primates // J. Hum. Evol. 2002. Vol. 43. P. 241-263. |
| [37] |
Ryan T. M., Krovitz G. E. Trabecular bone ontogeny in the human proximal femur // J. Hum. Evol. 2006. Vol. 51. P. 591-602. |
| [38] |
Stancu G., Şişu A., Stancu G., Petrescu C. Morphological exploration of trabecular system of pelvis. Rom. J. of Funct. et Clin., Macro- et Microscop // Anat. Anthropol. 2016. Vol. 15. P. 405-408. |
| [39] |
Strempel A., Trenkmann S., Krönauer et al. The stability of bone screws in the os sacrum // Eur. Spine J. 1998. Vol. 7. P. 313-320. |
| [40] |
Thomsen J. S., Ebbesen E. N., Mosekilde L. I. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study // Bone. 2002. Vol. 30. P. 267-274. |
| [41] |
Torres M. M. Quantifying trabecular orientation in the pelvic cancellous bone of modern humans, chimpanzeez and the kebara 2 neanderthal // Am. J. Hum. Biol. 2003. Vol. 15. P. 647-661. |
| [42] |
Whelan M. A., Gold R. P. Computed tomography of the sacrum // Normal anatomy. AJR. 1982. Vol. 139. P. 1183-1190. |
| [43] |
Williams F. L., Ozban R. Ontogeny and phylogeny of the pelvis in Gorilla, Pondo, Pan Australopithecus and Homo // Folia Primatol. 2007. Vol. 78. P. 99-117. |
Gaivoronsky I.V., Rodionov A.A., Nichiporuk G.I., Goryacheva I.A., Gaivoronskaya M.G.
/
| 〈 |
|
〉 |