GASOTRANSMITTERS IN THE REGULATION OF THE FUNCTIONS OF THE INTRAORGANIC BLOOD VESSELS OF THE UTERUS

V. M. Chertok , I. A. Khramova , A. Ye. Kotsyuba

Morphology ›› 2020, Vol. 157 ›› Issue (1) : 98 -111.

PDF
Morphology ›› 2020, Vol. 157 ›› Issue (1) : 98 -111. DOI: 10.34922/AE.2020.157.1.015
Articles
review-article

GASOTRANSMITTERS IN THE REGULATION OF THE FUNCTIONS OF THE INTRAORGANIC BLOOD VESSELS OF THE UTERUS

Author information +
History +
PDF

Abstract

Despite the fact that the intraorganic circulatory bed is the main element providing adequate blood supply to organ structures, its structure, functions and regulatory mechanisms in the uterus are largely unknown. The review presents the literature data and own materials on the localization and distribution of gasotransmitters in the intraorganic vessels of the uterus. The cellular and molecular mechanisms of the participation of NO, CO and H2S in the regulation of the function of these vessels are rewieved. On the one hand, these materials emphasize the importance of these signaling molecules in the regulation of contractility of the smooth muscles of the blood vessels and capillary permeability, on the other hand, point out the need for further studies of the role of gasotransmitters in the general system of uterine hemodynamic regulation.

Keywords

uterus / intraorganic vessels / nitric oxide / carbon monoxide / hydrogen sulfide

Cite this article

Download citation ▾
V. M. Chertok, I. A. Khramova, A. Ye. Kotsyuba. GASOTRANSMITTERS IN THE REGULATION OF THE FUNCTIONS OF THE INTRAORGANIC BLOOD VESSELS OF THE UTERUS. Morphology, 2020, 157(1): 98-111 DOI:10.34922/AE.2020.157.1.015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Васильева Е. М., Марков Х. М., Баканов М. И. Влияние системы L-аргинина-оксид азота на активность АТФаз и перекисное окисление липидов в эритроцитах детей с астматическим бронхитом // Бюл. экспер. биол. 1999. № 3. С. 340- 343.

[2]

Гусакова С. В., Ковалев И. В., Смаглий Л. В., Бирулина Ю.Г, Носарев А. В., Петрова И. В., Медведев М. А., Орлов С. Н., Реутов В. П. Газовая сигнализация в клетках млекопитающих // Успехи физиол. наук. 2015. Т. 46, № 4. С. 53-72.

[3]

Каргалова Е. П., Коцюба А. Е., Черток В. М., Момот Л. Н., Храмова И. А. Влияние эстрадиола на временную организацию микроциркуляторного русла яичников крыс // Тихоокеанск. мед. журн. 2019. № 1. С. 41-45.

[4]

Коцюба А. Е., Черток В. М. Иммуногистохимическое исследование H2S-позитивных нейронов в некоторых ядрах продолговатого мозга и моста человека при артериальной гипертензии // Журн. неврол. и психиатр. 2012. № 1. С. 54-59.

[5]

Коцюба А. Е., Черток В. М., Черток А. Г. Возрастные особенности СО-опосредованной реакции пиальных артерий разного диаметра у крыс // Бюл. экспер. биол. 2016. Т. 162, № 11. С. 612-617.

[6]

Марков Х. М. Роль оксида азота в патогенезе болезней детского возраста // Росс. вестн. перинатол. и педиатр. 2000. Т. 45, № 4. С. 43-47.

[7]

Немков Ю. К., Черток А. Г., Черток В. М. Влияние шумовибрационного воздействия на содержание uNOS-позитивных капилляров матки крыс // Морфология. 2018. Т. 153, вып. 3. С. 197-198.

[8]

Реутов В. П., Черток В. М. Новые представления о роли вегетативной нервной системы и систем генерации оксида азота в сосудах мозга // Тихоокеанск. мед. журн. 2016. № 2. С. 10-19.

[9]

Храмова И. А., Черток В. М., Коцюба А. Е., Черток А. Г. Структурная организация кровеносной системы матки // Тихоокеан. мед. журн. 2018. Т. 73, № 3. С. 13-23.

[10]

Черток В. М., Зенкина В. Г. Регуляция функций яичников: участие газовых трансмиттеров NO, СО и H2S // Успехи физиол. наук. 2015. Т. 46, № 4. С. 74-89.

[11]

Черток В. М., Зенкина В. Г., Каргалова Е. П. Функциональная морфология яичника. Владивосток : Медицина ДВ, 2015. 154 с.

[12]

Черток В. М., Коцюба А. Е. Иммунолокализация цистатионин β-синтазы и цистатионин γ-лиазы в стенке артерий головного мозга у нормо-и гипертензивных крыс // Докл. Акад. наук. 2012. Т. 445, № 5. С. 602-605.

[13]

Черток В. М., Коцюба А. Е. Особенности распределения ферментов синтеза H2S в стенке церебральных артерий у крыс // Бюл. эксперим. биол. и мед. 2012. Т. 154, № 7. С. 116-120.

[14]

Черток В. М.,Коцюба А. Е.,Черток А. Г.Распределениегемоксигеназ в стенке артерий мягкой оболочки мозга крыс // Морфология. 2017. Т. 151, вып. 1. С. 33-38.

[15]

Черток В. М., Немков Ю. К., Черток А. Г. Внутриорганное кровеносное русло матки. Владивосток: Медицина ДВ, 2018. 208 с.

[16]

Alexandreanu I. C., Lawson D. M. Effects of chronic administration of a heme oxygenase substrate or inhibitor on progression of the estrous cycle, pregnancy and lactation of Sprague-Dawley rats // Life Sci. 2002. Vol. 72, № 2. P. 153-162.

[17]

Andresen J. J., Shafi N. I., Durante W., Bryan R. M. Effects of carbon monoxide and heme oxygenase inhibitors in cerebral vessels of rats and mice // Am. J. Physiol. Heart. Circ. Physiol. 2006. Vol. 291, № 1. Р. 223-230.

[18]

Barber A., Robson S. C., Lyall F. Hemoxygenase and nitric oxide synthase do not maintain human uterine quiescence during pregnancy // Am. J. Pathol. 1999. Vol. 155, № 3. Р. 831-840.

[19]

Bellien J., Thuillez C., Joannides R. Contributon of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans // Fundam. Clin. Fharmacol. 2008. Vol. 22, № 4. P. 363-377. doi: 10.1111/j.1472-8206.2008.00610.x

[20]

Bibli S. I., Yang G., Zhou Z., Wang R., Topouzis S., Papapetropoulos A. Role of cGMP in hydrogen sulfide signaling // Nitric. Oxide. 2015. Vol. 46. Р. 7-13.

[21]

Boehning D., Snyder S. H. Novel neural modulators // Ann. Rev. Neurosci. 2003. Vol. 26. P. 105-131.

[22]

Cella M., Farina M. G., Keller Sarmiento M. I., Chianelli M., Rosenstein R. E., Franchi A. M. Heme oxygenase-carbon monoxide (HO-CO) system in rat uterus: effect of sexual steroids and prostaglandins // J. Steroid. Biochem. Mol. Biol. 2006. Vol. 99, № 1. P. 59-66.

[23]

Chen D.В., Jia S., King A. G., Barker A., Li S. M., Mata-Greenwood E., Zheng J., Magness R. R. Global Protein Expression Profiling Underlines Reciprocal Regulation of Caveolin 1 and Endothelial Nitric Oxide Synthase Expression in Ovariectomized Sheep Uterine Artery by Estrogen/Progesterone Replacement Therapy // Biol. Reprod. 2006. Vol. 74, № 5. Р. 832-838.

[24]

d’Emmanuele di Villa Bianca R., Fusco F., Mirone V., Cirino G., Sorrentino R. The Role of the Hydrogen Sulfide Pathway in Male and Female Urogenital System in Health and Disease // Antioxid Redox Signal. 2017. Vol. 27, № 10. Р. 654-668.

[25]

Donovan J., Wong P. S., Roberts R. E., Garle M. J., Alexander S. P.H., Dunn W.R., Ralevic V.A critical role for cystathionineβ-synthase in hydrogen sulfide-mediated hypoxic relaxation of the coronary artery // Vascul. Pharmacol. 2017. Vol. 93-95. Р. 20-32.

[26]

Dröge W. Free radicals in the physiological control of cell function // Physiol. Rev. 2002. Vol. 82, № 1. P. 47-95.

[27]

Fiorucci S., Distrutti E., Cirino G., Wallace J. L. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver // Gastroenterology. 2006. Vol. 131, № 1. P. 259-271.

[28]

Fredette N. C., Meyer M. R., Prossnitz E. R. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation // J. Steroid. Biochem. Mol. Biol. 2018. Vol. 176. Р. 65-72.

[29]

Freedman J. E., Loscalzo J. Nitric oxide and its relationship to thrombotic disorders // J. Thromb. Haemost. 2003. Vol. 1, № 6. Р. 1183-1188.

[30]

Gadalla M. M., Snayder S. H. Hydrogen sulfide as a gasotransmitter // J. Neurochem. 2010. Vol. 113, № 1. Р. 14-26.

[31]

Giuffrè A., Vicente J. B. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology // Oxid. Med. Cell Longev. 2018. 2018. Р. 6290931.

[32]

Greaves E., Collins F., Critchley H. O., Saunders P. T. ER-dependent effects on uterine endothelial cells are cell specific and mediated via Sp1 // Human Reproduction. 2013. Vol. 28, № 9. Р. 2490.

[33]

Gullotta F., di Masi A., Coletta M., Ascenzi P. CO metabolism, sensing, and signaling // Biofactors. 2012. Vol. 38, № 1. Р. 1-13.

[34]

Heijden van der O. W., Essers Y. P., Fazzi G., Peeters. L. L., De Mey. J. G., van Eys G. J. Uterine Artery Remodeling and Reproductive Performance Are Impaired in Endothelial Nitric Oxide Synthase-Deficient Mice // Biol. Reproduction. 2005. Vol. 72, № 5. Р. 1161-1168.

[35]

Jin R. C., Loscalzo J. Vascular nitric oxide: formation and function // J. Blood Meditsina. 2010. № 1. P. 147-162.

[36]

Kamoun P. Endogenous production of hydrogen sulfide in mammals // Amino Acids. 2004. Vol. 26, № 3. Р. 243-254.

[37]

Kaya H. S., Hantak A. M., Stubbs L. J., Taylor R. N., Bagchi I. C., Bagchi M. K. Roles of progesterone receptor A and B isoforms during human endometrial decidualization // Mol. Endocrinol. 2015. Vol. 29, № 6. P. 882-895.

[38]

Kim Y. M., Pae H. O., Park J. E., Lee Y. C., Woo J. M., Kim N. H., Choi Y. K., Lee B. S., Kim S. R., Chung H. T. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities // Antioxid. Redox Signal. 2011. Vol. 14, № 1. P. 137-167.

[39]

Kiss L., Deitch E. A., Szabo C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition // Life Sci. 2008. Vol. 83, № 17-18. Р. 589-594.

[40]

Krietsch T., Fernandes M. S., Kero J., Lösel R., Heyens M., Lam E. W., Huhtaniemi I., Brosens J. J., Gellersen B. Human homologs of the putative G protein-coupled membrane progestin receptors (mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not activated by progesterone // Mol. Endocrinol. 2006. Vol. 20, № 12. P. 3146-3164.

[41]

Kuo M. M., Kim D. H., Jandu S., Bergman Y., Tan S., Wang H., Pandey D. R., Abraham T. P., Shoukas A. A., Berkowitz D. E., Santhanam L. MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery // Am. J. Physiol. Heart Circ. Physiol. 2016. Vol. 310, № 1. P. H71-79.

[42]

Lapointe J., Roy M., St-Pierre I., Kimmins S., Gauvreau D., MacLaren L. A., Bilodeau J. F. Hormonal and spatial regulation of nitric oxide synthases (NOS) (neuronal NOS, inducible NOS, and endothelial NOS) in the oviducts // Endocrinology. 2006. Vol. 147, № 12. P. 5600-5610.

[43]

Lechuga T. J., Zhang H. H., Sheibani L., Karim M., Jia J., Magness R. R., Rosenfeld C. R., Chen D. B. Estrogen Replacement Therapy in Ovariectomized Nonpregnant Ewes Stimulates Uterine Artery Hydrogen Sulfide Biosynthesis by Selectively Up-Regulating Cystathionine β-Synthase Expression // Endocrinology. 2015. Vol. 156, № 6. P. 2288-2298.

[44]

Leonhardt S. A., Boonyaratanakornkit V., Edwards D. P. Progesterone receptor transcription and non-transcription signaling mechanisms // Steroids. 2003. Vol. 68, № 10-13. P. 761-770.

[45]

Lowicka E., Beltowski J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists // Pharmacol. Reports. 2007. Vol. 59, № 1. P. 4-24.

[46]

Magness R. R., Shaw C. E., Phernetton T. M., Zheng J., Bird I. M. Endothelial vasodilator production by uterine and systemic arteries, II: pregnancy effects on NO synthase expression // Am. J. Physiol. 1997. Vol. 272. P. H1730-1740.

[47]

Marazioti A., Bucci M., Ciro C. Coletta C., Vellecco V., Baskaran P., Szabó C., Cirino G., Marques A. R., Guerreiro B., Gonçalves A. M.L., Seixas J. D., Beuve A., Romão C. C., Papapetropoulos A. Inhibition of Nitric Oxide-Stimulated Vasorelaxation by Carbon Monoxide-Releasing Molecules // Arterioscler. Thromb. Vasc. Biol. 2011. Vol. 31, № 11. Р. 2570- 2576.

[48]

Marshall S. A., Senadheera S. N., Jelinic M., O’Sullivan K., Parry L. J., Tare M. Relaxin Deficiency Leads to Uterine Artery Dysfunction During Pregnancy in Mice // Front. Physiol. 2018. Vol. 22, № 9. P. 255-267.

[49]

Mathai J. C., Missner A., Kugler P., Saparov S. M., Zeidel M. L., Lee J. K., Pohl P. NО facilitator required for membrane transport of hydrogen sulfide // PNAS. 2009. Vol. 106, № 39. Р. 16633- 16638. doi: 10.1073/pnas.0902952106

[50]

Mayra P. R., Rosalina V. L., López G., Iruretagoyena J., Magness R. Regulation of uterine blood flow. I. Functions of estrogen and estrogen receptor α/β in the uterine vascular endothelium during pregnancy // Rev. Chil. Obstet. Ginecol. 2014. Vol. 79, № 2. Р. 129-139.

[51]

Mitidieri E., Tramontano T., Donnarumma E., Brancaleone V., Cirino G., D Emmanuele di Villa Bianca R., Sorrentino R. l-Cys/ CSE/H2S pathway modulates mouse uterus motility and sildenafil effect // Pharmacol Res. 2016. Vol. 111. Р. 283-289.

[52]

Molinari C., Battaglia A., Grossini E, Mary D. A., Stoker J. B., Surico N., Vacca G. The effect of progesterone on coronary blood flow in anaesthesized pigs // Exp. Physiol. 2001. Vol. 86, № 1. Р. 101-108.

[53]

Nagpure B. V., Bian J.-S. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System // Oxid. Med. Cell Longev. 2016. Vol. 2016. 16 р.

[54]

Naik J. S., O’Donaughy T. L., Walker B. R. Endogenous carbon monoxide is an endothelial-derived vasodilator factor in the mesenteric circulation // Am. J. Physiol. Heart Circ. Physiol. 2003. Vol. 284, № 3. Р. H838-H845.

[55]

Nelson Sh.H., Steinsland O. S., Wang Y., Yallampalli C., Dong Y. L., Sanchez J. M. Increased Nitric Oxide Synthase Activity and Expression in the Human Uterine Artery During Pregnancy // Circ. Res. 2000. Vol. 87, № 5. Р. 406-411.

[56]

Němeček D., Dvořáková M., Sedmíková M. Heme oxygenase/ carbon monoxide in the female reproductive system: an overlooked signalling pathway // Int. J. Biochem. Mol. Biol. 2017. Vol. 8, № 1. P. 1-12.

[57]

Obermann W.M., Sondermann H., Russo A. A., Pavletich N. P., Hartl F. U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis // J. Cell Biol. 1998. Vol. 143, № 4. P. 901-910.

[58]

Orshal J. M., Khalil R. A. Gender, sex hormones, and vascular tone // Am. J. Physiol. Regul. Integr. Comp.Physiol. 2004. Vol. 286, № 2. Р. 233-249.

[59]

Pastore M. B., Talwar S., Conley M. R., Magness R. R. Identification of Differential ER-Alpha Versus ER-Beta Mediated Activation of eNOS in Ovine Uterine Artery Endothelial Cells // Biol. Reprod. 2016. Vol. 94, № 6. Р. 139.

[60]

Petz L. N., Ziegler Y. S., Schultz J. R., Kim H., Kemper J. K., Nardulli A. M. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites // J. Steroid Biochem. Mol. Biol. 2004. Vol. 88, № 2. Р. 113-122.

[61]

Qin X., Kwansa H., Bucci E., Doré S., Boehning D., Shugar D., Koehler R. C. Role of heme oxygenase-2 in pial arteriolar response to acetylcholine in mice with and without transfusion of cell-free hemoglobin polymers // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. Vol. 295, № 2. Р. 498-504.

[62]

Scarpin K. M., Graham J. D., Mote P. A., Clarke C. L. Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression // Nucl. Recept. Signal. 2009. Vol. 7. Р. е009.

[63]

Sheibani L., Lechuga T. J., Zhang H.Н., Hameed A., Wing D. A., Kumar S., Rosenfeld C. R., Chen D. B. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation // Biol. Reprod. 2017. Vol. 96, № 3. P. 664-672.

[64]

Siddiqui M. R., Komarova Y.A., Vogel S. M., Gao X., Bonini M. G., Rajasingh J., Zhao Y. Y., Brovkovych V., Malik A. B. Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability // J. Cell. Biol. 2011. Vol. 193, № 5. P. 841-850.

[65]

Smith S. K. Angiogenesis and reproduction // Br. J. Obstet. Gyn. 2001. Vol. 108, № 8. Р. 777-783.

[66]

Stamatovic S. M., Keep R. F., Wang M. M., Jankovic I., Andjelkovic A. V. Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells // J. Biol. Chem. 2009. Vol. 284, № 28. P. 19053-19066.

[67]

Tarachand U., Eapen J. Influence of estrogen, progesterone and estrous cycle on gamma-glutamyltranspeptidase of rat endometrium // FEBS Lett. 1982. Vol. 141, № 2. Р. 210-212.

[68]

Theoharides T. C., Stewart J. M. Genitourinary mast cells and survival // Transl. Androl. Urol. 2015. Vol. 4, № 5. Р. 579-586.

[69]

Tropea T., De Francesco E. M., Rigiracciolo D., Maggiolini M., Wareing M., Osol G., Mandalà M. Pregnancy Augments G Protein Estrogen Receptor (GPER) Induced Vasodilation in Rat Uterine Arteries via the Nitric Oxide - cGMP Signaling Pathway // PLoS One. 2015. Vol. 10, № 11. Р. e0141997.

[70]

Väisänen-Tommiska M. R. Nitric oxide in the human uterine cervix: endogenous ripening factor // Ann. Med. 2008. Vol. 40, № 1. Р. 45-55.

[71]

Väisänen-Tommiska M. R., Butzow R., Ylikorkala O., Mikkola T. S. Mifepristone-induced nitric oxide release and expression of nitric oxide synthases in the human cervix during early pregnancy // Hum. Reprod. 2006. Vol. 21, № 8. Р. 2180-2184.

[72]

Walford G., Loscalzo J. Nitric oxide in vascular biology // J. Thromb. Haemost. 2003. Vol. 1, № 10. Р. 2112-2118.

[73]

Wang H., Wang A. X., Aylor K., Barrett E. J. Nitric oxide directly promotes vascular endothelial insulin transport // Diabetes. 2013. Vol. 62, № 12. P. 4030-4042.

[74]

Wang R. Signal Transduction and the Gasotransmitters. NO, CO and H2S in Biology and Meditsina // Humana Press. Canada, 2004. 394 р.

[75]

Webb G. D., Lim L. H., Oh V. M., Yeo S. B., Cheong Y. P., Ali M. Y., El Oakley R., Lee C. N., Wong P. S., Caleb M. G., Salto-Tellez M., Bhatia M., Chan E. S., Taylor E. A., Moore P.K. Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery // J. Pharmacol. Exp. Ther. 2008. Vol. 324, № 1. Р. 876-882.

[76]

Woidacki K., Jensen F., Zenclussen A. C. Mast cells as novel mediators of reproductive processes // Front. Immunol. 2013. Vol. 4. Р. 29-36.

[77]

Wu L., Wang R. Carbon monoxide: endogenous production, physiological functions and pharmacological applications // Pharmac. Rev. 2005. Vol. 57, № 4. P. 585-630.

[78]

Yang G., Wu L., Jiang В., Yang W., Qi J., Cao K., Meng Q., Mustafa A. K., Mu W., Zhang S., Snyder S. H., Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine-lyase // Science. 2008. Vol. 322, № 5901. Р. 587-590.

[79]

Zenclussen M. L., Casalis P. A., Jensen F., Woidacki K., Zenclussen A. C. Hormonal fluctuations during the estrous cycle modulate heme oxygenase-1 expression in the uterus // Front. Endocrinol. (Lausanne). 2014. Vol. 5. P. 32.

[80]

Zhang H. H., Chen J. C., Sheibani L., Lechuga T. J., Chen D. B. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S). Production in Human Uterine Artery Endothelial Cells // J. Clin. Endocrinol. Metab. 2017. Vol. 102, № 7. P. 2382-2393.

[81]

Zhao X., Zhang L. K., Zhang C. Y., Zeng X. J., Yan H., Jin H. F., Tang C. S., Du J. B. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats // Hypertens. Res. 2008. Vol. 31, № 8. Р. 1619-1630.

[82]

Zoccali C., Catalano C., Rastelli S. Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage // Nephrol. Dial. Transplant. 2009. Vol. 24, № 5. Р. 1394-1396.

RIGHTS & PERMISSIONS

Chertok V.M., Khramova I.A., Kotsyuba A.Y.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/