STIMULATION OF RAT SKELETAL MUSCLE ANGIOGENESIS BY DIRECT AND CELL-MEDIATED ADMINISTRATION OF RECOMBINANT ANGIOGENIN GENE

I. V. Samatoshenkov

Morphology ›› 2020, Vol. 157 ›› Issue (1) : 35 -40.

PDF
Morphology ›› 2020, Vol. 157 ›› Issue (1) : 35 -40. DOI: 10.34922/AE.2020.157.1.006
Articles
research-article

STIMULATION OF RAT SKELETAL MUSCLE ANGIOGENESIS BY DIRECT AND CELL-MEDIATED ADMINISTRATION OF RECOMBINANT ANGIOGENIN GENE

Author information +
History +
PDF

Abstract

Objective - to evaluate the effectiveness of revascularization of the rat gastrocnemius muscle following direct and human umbilical cord blood mononuclear cells (MNCs)-mediated delivery of human recombinant angiogenin (Ang) gene to the ischemic area using adenovirus serotype 5 vector (Ad5). Materials and methods. The study was carried out on 30 Wistar rats. Fourteen days after the excision of the femoral artery fragment, the genetic construct was injected into the animals’ ischemic gastrocnemius muscle (AD5-Ang group, n=15). In the other group (mccp+Ad5-Ang, n=15), the transgene was delivered to the muscle with the help of MNCs within the same time limit. In the control group (n=15) 0,9 % NaCl was injected into the muscle of animals under the same conditions. Fourteen and twenty-eight days after the injection, the ratio of capillaries/muscle fibers, the number of muscle fibers and the number of muscle fibers with a central location of nuclei (MCN) were evaluated in the ischemic area. Capillaries were identified by localization of endothelial cells detected by immunohistochemical reaction with antibodies against CD31. Results. On the 14th day after administration of MNCs+Ad5Ang, the ratio of capillaries to the number of muscle fibers in the ischemic area increased by 57 % (p<0,05). On the 28th day in the MNCs+Ad5-Ang group and in the Ad5-Ang group, no significant differences in this indicator were found compared with the control group. The number of muscle fibers on the 14th day in the Ad5-Ang group did not change, and in the MNCs+Ad5-Ang group, it decreased by 58,4 % (p<0,05). By the 28th day, this indicator in the MNCs+Ad5-Ang group decreased by 95,9 % (p<0,05), and in the Ad5-Ang group - by 197,8 % (p<0,05). The number of MCN on the 14th day significantly increased in both experimental groups, in which the genetic constructs were used. Conclusion. The introduction of recombinant ang gene into the area of skeletal muscle ischemia or its delivery to this area with the help of MCNs stimulates angiogenesis and post-ischemic regeneration of muscle fibers.

Keywords

skeletal muscle / ischemia / angiogenesis / angiogenin / mononuclear umbilical cord blood cells / adenoviral vector

Cite this article

Download citation ▾
I. V. Samatoshenkov. STIMULATION OF RAT SKELETAL MUSCLE ANGIOGENESIS BY DIRECT AND CELL-MEDIATED ADMINISTRATION OF RECOMBINANT ANGIOGENIN GENE. Morphology, 2020, 157(1): 35-40 DOI:10.34922/AE.2020.157.1.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Бочков Н. П., Константинов Б. А., Гавриленко А. В. Генноинженерные технологии в лечении хронической ишемии нижних конечностей // Вестник РАМН. 2006. № 9-10. С. 6-11.

[2]

Воронов Д. А., Бочков Н. П., Гавриленко А. В. Изучение возможности применения генно-терапевтических методов для лечения пациентов с ишемией нижних конечностей // Вестник РАМН. 2006. № 9-10. C. 6-11.

[3]

Константинов Б. А., Бочков Н. П., Гавриленко А. В. Экспериментальные и клинические результаты использования генно-инженерных конструкций с геном ангиогенина в лечении хронической ишемии нижних конечностей // Медицинская генетика. 2005. Т. 4, № 7. С. 327-331.

[4]

Лебедев С. В.,Карасев А. В.,Кунгурцев В. В.,Лохонина А. В., Клейменова Е. Б. Клеточная терапия критической ишемии нижних конечностей (проблемы и перспективы) // Вестник Российской академии медицинских наук. 2013. № 3. С. 33-44.

[5]

Патент РФ № 2197263. Способ лечения ран и язвенных дефектов / И. А. Рогов, В. Г. Цуман, А. Е. Машков, Г. В. Плаксина, Д. А. Пыхтеев, Р. Я. Киримов, А. М. Шалыгина, Н. А. Тихомирова, Г. С. Комолова. Заявка от 16.05.2001 г. Опубл. в БИ. 2003.

[6]

Плотников М. В., Максимов А. В. Лечение заболеваний периферических артерий с использованием прогениторных клеток // Практическая медицина 2014. Т. 2, № 4. С. 118- 122. doi: 616.13-004.6-08

[7]

Талицкий К. А., Булкина О. С., Арефьева Т. И., Воробьева О. Н., Левицкий И. В., Федорович А. А., Макаревич П. И., Парфенова Е. В., Карпов Ю. А. Эффективность терапевтического ангиогенеза у больных с хронической ишемией нижних конечностей // Клеточная трансплантология и тканевая инженерия. 2011. Т. VI, № 3. С. 89-98.

[8]

Belch J., Hiatt W. R., Baumgartner I. Effect of fibroblast growth factor FGF on amputation and death: a randomised placebocontrolled trial of gene therapy in critical limb ischaemia // Lancet. 2011. Vol. 377, № 9781. P. 1929-1937.

[9]

Carmeliet P., Collen D. Transgenic mouse models in angiogenesis and cardiovascular disease // J. Pathol. 2000. Vol. 190, № 3. P. 387-405. doi: 10.1002/(SICI)1096-9896(200002)190:3<387

[10]

Chen F., Tan Z., Dong C. Y., Chen X., Guo S. F. Adeno-associated virus vectors simultaneously encoding VEGF and angiopoietin-1 enhances neovascularization in ischemic rabbit hind-limbs // Acta Pharmacol. Sin. 2007. Vol. 28. P. 493-502.

[11]

Chen H., Hung H., Shyu K., Wang B., Sheu J., Liang Y., Chang C., Kuan P. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction // Eur. J. Clin. Invest. 2005. Vol. 35, № 11. P. 677-686.

[12]

Cook K. M., Figg W. D. Angiogenesis inhibitors: current strategies and future prospects // CA Cancer J. Clin. 2010. Vol. 60, № 4. P. 222-243. doi: 10.3322/caac.20075

[13]

Fowkes G., Rudan D., Rudan I., Aboyans V. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis // The Lancet. 2013. Vol. 382. P. 1329-1340.

[14]

Hockel M., Schlenger K., Doctrow S. Therapeutic Angiogenesis // Arch. Surg. 1993. Vol. 128, № 4. P. 423-429.

[15]

Ikeda Y., Fukuda N., Wada M., Matsumoto T., Satomi A., Yoko yama S., Saito S., Matsumoto K., Kanmatsuse K., Mugishima H. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene // Hypertens Res. 2004. Vol. 27, № 2. P. 119-128.

[16]

Laughlin M. Umbilical cord blood for allogeneic transplantation in children and adults // Bone Marrow Transplant. 2001. Vol. 27, № 1. P. 1-6.

[17]

Makarevich P., Tsokolaeva Z., Shevelev A., Rybalkin I., Shevchenko E., Beloglazova I., Vlasik T., Tkachuk V., Parfyo nova Y. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle // PLoS One. 2012. Vol. 7. P. e38776.

RIGHTS & PERMISSIONS

Samatoshenkov I.V.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/