SUBPOPULATIONS OF CALBINDIN-, CALRETININ- AND PARVALBUMINIMMUNOREACTIVE INTERNEURONS OF THE DORSAL HORN OF THE SPINAL CORD OF FEMALE C57BL/6 MICE
V. V. Porseva , A. I. Emanuilov , P. M. Masliukov
Morphology ›› 2020, Vol. 157 ›› Issue (1) : 18 -23.
SUBPOPULATIONS OF CALBINDIN-, CALRETININ- AND PARVALBUMINIMMUNOREACTIVE INTERNEURONS OF THE DORSAL HORN OF THE SPINAL CORD OF FEMALE C57BL/6 MICE
Objective - to make a comparative analysis of interneurons subpopulations that contain calbindin (CAB), calretinin (CAR) and parvalbumin (PAV) in the dorsal horn of the TIII-TV segments of the spinal cord (SC). Materials and methods. Immunoreactive (IR) interneurons in 16-week-old female C57BL/6 mice were studied using immunohistochemical methods. Results. All subpopulations of IR interneurons were located in all laminae of the dorsal horn of the SC; however, interneurons IR to PAV were not detected in plate I. The relative content of CAB interneurons was greatest in laminae I (27 %) and II (29 %), CAR interneurons - in lamina II (21,5 %), PAV interneurons - in laminae IV (5,7 %) and V (6,2 %). In addition, a subpopulation of PAV interneurons in plates II, III and in the region of the dorsal horn medial border (MB) was represented by a small group of cells, in contrast with other calcium-binding proteins. The same was true for CAR interneurons in plates III, IV, V and MB. The quantitative distribution of the subpopulation of calbindin-containing interneurons prevailed in all laminae of the dorsal horn of SC. The differences in cell sizes in the mentioned subpopulations of IR interneurons were statistically significant, with CAB and CAR interneurons being larger and PAV interneurons - smaller. Conclusions. In the dorsal horn of the SC, various subpopulations of interneurons immunoreactive to calbindin, calretinin, and parvalbumin were identified, and the subpopulations were specific in each lamina.
interneuron / dorsal horn / spinal cord / immunohistochemistry
| [1] |
Андреев-Андриевский А. А., Шенкман Б. С., Попова А. С., Долгов О. Н., Анохин К. В., Солдатов П. Э., Виноградова О. Л., Ильин Е. А., Сычев В. Н. Экспериментальные исследования на мышах по программе полета биоспутника «Бион-М1» // Авиакосмическая и экологическая медицина 2014. Т. 48, № 1. С. 14-27. |
| [2] |
Порсева В. В., Шилкин В. В., Стрелков А. А., Маслюков П. М. Субпопуляции кальбиндин-иммунореактивных интернейронов дорсального рога спинного мозга мышей // Цитология. 2014. Т. 56, № 8. С. 612-618. |
| [3] |
Chen S., Yang G., Zhu Y. et al. A Comparative study of three interneuron types in the rat spinal cord // PLoS ONE. 2016. Vol. 11, № 9. P. e0162969. doi: 10.1371/journal.pone.0162969 |
| [4] |
Kim J. J., Chang I. Y., Chung Y. Y. et al. Immunohistochemical studies on the calbindin D-28K and parvalbumin positive neurons in the brain stem and spinal cord after transection of spinal cord of rats // Korean J. Phys. Anthropol. 2002. Vol. 15, № 4. P. 305-329. In Korean. doi: 10.11637/kjpa.2002.15.4.305 |
| [5] |
Levine A. J., Hinckley C. A., Hilde K. L. et al. Identification of a cellular node for motor control pathways // Nat. Neurosci. 2014. Vol. 17, № 4. P. 586-593. doi: 10.1038/nn.3675 |
| [6] |
Li Y. N., Li Y. C., Kuramoto H. et al. Immunohistochemical demonstration of the calcium channel alpha2 subunit in the chicken dorsal root ganglion and spinal cord: a special reference to colocalization with calbindin-D28k in dorsal root ganglion neurons // Neurosci. Res. 2007. Vol. 59, № 3. P. 304-308. doi: 10.1016/j.neures.2007.07.008 |
| [7] |
Merkulyeva N., Veshchitskii A., Makarov F. et al. Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord // Frontiers in Neuroanatomy. 2016. Vol. 9. P. 166. doi: 10.3389/fnana.2015.00166 Correct version |
| [8] |
Molander C., Xu Q., Rivero-Melian C., Grant G. Cytoarchitectonic organization of the spinal cord in the rat: II. The cervical and upper thoracic cord // J. Comp. Neurol. 1989. Vol. 289, № 3. P. 375-385. doi: 10.1002/cne.902890303 |
| [9] |
Morona R., Lopez J. M., Gonzalez A. Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase // Brain Res. Bull. 2006. Vol. 69, № 5. P. 519-534. doi: 10.1016/j.brainresbull.2006.02.022 |
| [10] |
Schwaller B. The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells // Biochim. Biophys. Acta. 2012. Vol. 1820, № 8. P. 1294-1303. doi: 10.1016/j.bbagen.2011.11.008 |
| [11] |
Zhang M. D., Tortoriello G., Hsueh B., Tomer R., Ye L., Mitsios N., Borgius L., Grant G., Kiehn O., Watanabe M. et al. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, № 12. P. E1149-1158. doi: 10.1073/pnas.1402318111 |
Porseva V.V., Emanuilov A.I., Masliukov P.M.
/
| 〈 |
|
〉 |