Senescent Cells and Their Role in Histogenesis

Roman V. Deev , Yulia V. Markina , Tatiana V. Kirichenko , Ivan V. Zhivodernikov , Alexander M. Markin , Ilya I. Eremin , Konstantin V. Kotenko

Morphology ›› 2025, Vol. 163 ›› Issue (1) : 5 -16.

PDF (903KB)
Morphology ›› 2025, Vol. 163 ›› Issue (1) : 5 -16. DOI: 10.17816/morph.677025
Reviews
review-article

Senescent Cells and Their Role in Histogenesis

Author information +
History +
PDF (903KB)

Abstract

Aging, or senescence (from Latin senex—old man), is a biological process characterized by the gradual degradation of organs and systems at various hierarchical levels of structural organization. Currently, the concept of cellular senescence is the prevailing framework for understanding organismal aging. It has been demonstrated that certain cells in developing (prenatal histogenesis) and definitive tissues undergo a series of morphofunctional changes, including increased cell size; disruption of the nuclear envelope; formation of distinct heterochromatin foci; acquisition of a secretory phenotype characterized by the production of proinflammatory cytokines, β-galactosidase, transforming growth factor β (TGFβ), and other factors; and mitotic arrest through the active transcription of p16INK4A and p21CIP1, genes involved in the induction of cellular senescence. It is hypothesized that such cells, referred to as senescent cells, represent an independent functional stage of cytogenesis within tissues rather than merely a transitional form between actively functioning cell lineage elements and those undergoing programmed cell death. The histogenetic significance of senescent cells in both physiological and reparative tissue regeneration, as well as their broader impact on histophysiology, remains to be fully elucidated. The pharmacologic elimination of senescent cells from tissues is an actively developing strategy in anti-aging therapy.

Keywords

senescent cells / aging / histogenesis / age-related histology / age-associated diseases

Cite this article

Download citation ▾
Roman V. Deev, Yulia V. Markina, Tatiana V. Kirichenko, Ivan V. Zhivodernikov, Alexander M. Markin, Ilya I. Eremin, Konstantin V. Kotenko. Senescent Cells and Their Role in Histogenesis. Morphology, 2025, 163(1): 5-16 DOI:10.17816/morph.677025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anichkov NM, Kvetnoi IM. The role of I.V. Davydovski in the development of gerontology. Advances in Gerontology. 2002;9(3):257. (In Russ.) EDN: YCTKNV

[2]

DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell. 2015;26(25):4524–4531. doi: 10.1091/mbc.E14-06-1084 EDN: WRGIFB

[3]

Lushnikov EF. Death of the human being and its organs, tissues and cells. Modern ideas. Obninsk; 2024. (In Russ.)

[4]

Kirichenko TV, Markina YuV, Markin AM, et al. Senescent cells: a therapeutic target in correction of aging. Regenerative Biotechnologies, Preventive, Digital and Predictive Medicine. 2024;1(3):53–63. (In Russ.) doi: 10.17116/rbpdpm2024103153 EDN: FHIPKL

[5]

Choi EL, Taheri N, Chandra A, Hayashi Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int J Mol Sci. 2023;24(12):9810. doi: 10.3390/ijms24129810 EDN: FYBNLD

[6]

Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, et al. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell. 2020;19(2):e13083. doi: 10.1111/acel.13083 EDN: DEJOAZ

[7]

Ogrodnik M, Carlos Acosta J, Adams PD, et al. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell. 2024;187(16):4150–4175. doi: 10.1016/j.cell.2024.05.059 EDN: FCJVFN

[8]

Morgunova GV, Kolesnikov AV, Klebanov AA, Khokhlov AN. Senescence-associated β-galactosidase-a biomarker of aging, DNA damage, or cell proliferation restriction? Moscow University Biological Sciences Bulletin. 2015;(4):15–18. (In Russ.) EDN: UXOJVH

[9]

Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38(5):e100492. doi: 10.15252/EMBJ.2018100492

[10]

Bernardes de Jesus B, Blasco MA. Assessing cell and organ senescence biomarkers. Circ Res. 2012111(1):97–109. doi: 10.1161/CIRCRESAHA.111.247866 EDN: JRAEBL

[11]

Biran A, Zada L, Abou Karam P, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4): 661–671. doi: 10.1111/acel.12592

[12]

Li G, Zhang D, Wang S, et al. Protective Role of Taraxasterol against Cardiovascular Aging and Aging-Induced Desensitization of Insulin Signaling. Front Biosci (Landmark Ed). 2022;27(11):311. doi: 10.31083/j.fbl2711311 EDN: EMDIYZ

[13]

Geng YQ, Guan JT, Xu XH, Fu YC. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun. 2010;396(4):866–869. doi: 10.1016/j.bbrc.2010.05.011 EDN: NWJHYT

[14]

Klishov AA. Histogenesis and tissue regeneration. Leningrad: Meditsina; 1984. (In Russ.)

[15]

Schelkunov SL. The Principles of cellular differentiation. Moscow: Meditsina; 1977. (In Russ.)

[16]

Danilov RK, Borovaia TG, Klochkov ND. Experimental and histological analysis of histogenesis and tissue regeneration (some results of the 20th century and perspectives on further research). Morphology. 2000;117(4):7–16. (In Russ.) EDN: MQKGEV

[17]

Danilov RK. General principles of cellular organisation, development and classification of tissues. In: Danilov RK, editor. Manual of histology. 2nd ed. Saint Petersburg: SpetsLit; 2011. P: 98–123. (In Russ.)

[18]

Myadelets OD. Fundamentals of human age-related histology: textbook. Vitebsk: Vitebskiy gosudarstvennyy ordena Druzhby narodov meditsinskiy universitet, 2024. (In Russ.) ISBN: 978-985-580-197-0 EDN: DAJSIE

[19]

Nasonov DN, Aleksandrov VYa. Response of living matter to external influences. Moscow, Leningrad: Izd-vo Akad. nauk SSSR; 1940. (In Russ.)

[20]

Deev RV, Bilyalov AI, Zhampeisov TM. Modern ideas about cell death. Genes & Cells. 2018;13(1):6–19. (In Russ.) doi: 10.23868/201805001 EDN: YNQDVJ

[21]

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6

[22]

Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: Defining a path forward. Cell. 2019;179(4): 813–827. doi: 10.1016/j.cell.2019.10.005 EDN: PGJUED

[23]

Jiang J, Wang Y, Sušac L, et al. Structure of telomerase with telomeric DNA. Cell. 2018;173(5):1179–1190.e13. doi: 10.1016/j.cell.2018.04.038 EDN: VFVENU

[24]

Nassrally MS, Lau A, Wise K, et al. Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev. 2019;179:11–22. doi: 10.1016/j.mad.2019.01.009

[25]

Afifi MM, Crncec A, Cornwell JA, et al. Irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation. Cell Rep. 2023;42(9):113079. doi: 10.1016/j.celrep.2023.113079 EDN: IHGSVZ

[26]

Mylonas A, O’Loghlen A. Cellular senescence and ageing: Mechanisms and interventions. Front Aging. 2022;3:866718. doi: 10.3389/fragi.2022.866718 EDN: BQSPHC

[27]

Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38(5):e100492. doi: 10.15252/embj.2018100492

[28]

Harley J, Santosa MM, Ng CY, et al. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology. 2024;25(2):341–360. doi: 10.1007/s10522-023-10076-5 EDN: BEGUSA

[29]

Lanz MC, Zatulovskiy E, Swaffer MP, et al. Increasing cell size remodels the proteome and promotes senescence. Mol Cell. 2022;82(17):3255–3269.e8. doi: 10.1016/j.molcel.2022.07.017 EDN: ZKTAKE

[30]

Neurohr GE, Terry RL, Lengefeld J, et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell. 2019;176(5):1083–1097.e18. doi: 10.1016/j.cell.2019.01.018 EDN: BRJMLC

[31]

Baird A, Gomes M, Souza CA, et al. Short Telomere Syndrome presenting with pulmonary fibrosis, liver cirrhosis and hepatopulmonary syndrome: a case report. BMC Pulm Med. 2023;23(1):114. doi: 10.1186/s12890-023-02378-8 EDN: DFUVPH

[32]

Spivak IM, Mikhelson VM, Spivak DL. Telomere length, telomerase activity, stress and aging. Advances in Gerontology. 2015;28(3): 441–448. (In Russ.) EDN: UYLYSH

[33]

Braun AD, Mozhenok TP. Non-specific cellular system adaptation. Leningrad: Nauka; 1987. (In Russ.)

[34]

Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi: 10.1038/s41580-020-00314-w EDN: HMSHWJ

[35]

Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell. 2024;23(1):e13920. doi: 10.1111/acel.13920

[36]

Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol Aging Age Relat Dis. 2015;5:27743. doi: 10.3402/pba.v5.27743

[37]

Narita M, Young AR, Arakawa S et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332(6032):966–970. doi: 10.1126/science.1205407

[38]

Belhadj J, Surina S, Hengstschläger M, Lomakin AJ. Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence. Aging Cell. 2023;22(12):e14012. doi: 10.1111/acel.14012 EDN: BSLBWC

[39]

Gao E, Sun X, Thorne RF, et al. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J Transl Med. 2023;21(1):401. doi: 10.1186/s12967-023-04232-1 EDN: MWRDBK

[40]

Welter EM, Benavides S, Archer TK, et al. Machine learning-based morphological quantification of replicative senescence in human fibroblasts. Geroscience. 2024;46(2):2425–2439. doi: 10.1007/s11357-023-01007-w EDN: IMNPWZ

[41]

Cristea A, Qaisar R, Edlund PK, et al. Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell. 2010;9(5):685–697. doi: 10.1111/j.1474-9726.2010.00594.x EDN: NZOSIB

[42]

Cisterna B, Malatesta M. Molecular and structural alterations of skeletal muscle tissue nuclei during aging. Int J Mol Sci. 2024;25(3):1833. doi: 10.3390/ijms25031833 EDN: CDMPIW

[43]

Taimen P, Pfleghaar K, Shimi T, et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci U S A. 2009;106(49):20788–20793. doi: 10.1073/pnas.0911895106

[44]

Sadaie M, Salama R, Carroll T, et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 2013;27(16):1800–1808. doi: 10.1101/gad.217281.113 EDN: RMWXUF

[45]

Mustafin RN, Khusnutdinova EK. The relationship of lamins with epigenetic factors during aging. Vavilov Journal of Genetics and Breeding. 2022;26(1):40–49. doi: 10.18699/VJGB-22-06 EDN: CUVKWK

[46]

Kristiani L, Kim M, Kim Y. Role of the nuclear lamina in age-associated nuclear reorganization and inflammation. Cells. 2020;9(3):718. doi: 10.3390/cells9030718 EDN: UFHLED

[47]

Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest. 2022;132(16):e158446. doi: 10.1172/JCI158446 EDN: QPZPGS

[48]

López-Gil L, Pascual-Ahuir A, Proft M. Genomic instability and epigenetic changes during aging. Int J Mol Sci. 2023;24(18):14279. doi: 10.3390/ijms241814279 EDN: KBUINW

[49]

Pradeau-Phélut L, Etienne-Manneville S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr Opin Cell Biol. 2024;87:102325. doi: 10.1016/j.ceb.2024.102325 EDN: HXJFIA

[50]

Schmidt CJ, Stehbens SJ. Microtubule control of migration: Coordination in confinement. Curr Opin Cell Biol. 2024;86:102289. doi: 10.1016/j.ceb.2023.102289 EDN: TRHOXY

[51]

Socodato R, Relvas JB. A cytoskeleton symphony: Actin and microtubules in microglia dynamics and aging. Prog Neurobiol. 2024;234:102586. doi: 10.1016/j.pneurobio.2024.102586 EDN: XHPWGM

[52]

Okenve-Ramos P, Gosling R, Chojnowska-Monga M, et al. Neuronal ageing is promoted by the decay of the microtubule cytoskeleton. PLoS Biol. 2024;22(3):e3002504. doi: 10.1371/journal.pbio.3002504 EDN: AVYDQG

[53]

Kounakis K, Tavernarakis N. The cytoskeleton as a modulator of aging and neurodegeneration. Adv Exp Med Biol. 2019;1178:227–245. doi: 10.1007/978-3-030-25650-0_12 EDN: CLUGNY

[54]

Sferra A, Nicita F, Bertini E. Microtubule dysfunction: A common feature of neurodegenerative diseases. Int J Mol Sci. 2020;21(19):7354. doi: 10.3390/ijms21197354 EDN: GWEPNN

[55]

Li Z, Jiao Y, Fan EK, et al. Aging-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of bacteria. J Immunol. 2017;199(9):3176–3186. doi: 10.4049/jimmunol.1700140

[56]

Kuehnemann C, Wiley CD. Senescent cells at the crossroads of aging, disease, and tissue homeostasis. Aging Cell. 2024;23(1):e13988. doi: 10.1111/acel.13988 EDN: AMCLZI

[57]

Olan I, Handa T, Narita M. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence. Curr Opin Cell Biol. 2023;83:102206. doi: 10.1016/j.ceb.2023.102206 EDN: XLAPMS

[58]

Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–496. doi: 10.1038/nrm3823 EDN: USWTWN

[59]

Muñoz-Espín D, Cañamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155(5):1104–1118. doi: 10.1016/j.cell.2013.10.019

[60]

Storer M, Mas A, Robert-Moreno A et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155(5):1119–1130. doi: 10.1016/j.cell.2013.10.041

[61]

Calcinotto A, Kohli J, Zagato E, et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev. 2019;99(2):1047–1078. doi: 10.1152/physrev.00020.2018 EDN: XAESJN

[62]

Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife. 2015;4:e05505. doi: 10.7554/eLife.05505

[63]

Da Silva-Álvarez S, Guerra-Varela J, Sobrido-Cameán D, et al. Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell. 2020;19(1):e13052. doi: 10.1111/acel.13052

[64]

Feng T, Meng J, Kou S, et al. CCN1-induced cellular senescence promotes heart regeneration. Circulation. 2019;139(21):2495–2498. doi: 10.1161/CIRCULATIONAHA.119.039530

[65]

Young LV, Wakelin G, Cameron AWR, et al. Muscle injury induces a transient senescence-like state that is required for myofiber growth during muscle regeneration. FASEB J. 2022;36(11):e22587. doi: 10.1096/fj.202200289RR EDN: EUGJGI

[66]

Moiseeva V, Cisneros A, Sica V, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature. 2023;613(7942):169–178. doi: 10.1038/s41586-022-05535-x EDN: ZQIZZC

[67]

de Magalhães JP. Cellular senescence in normal physiology. Science. 2024;384(6702):1300–1301. doi: 10.1126/science.adj7050 EDN: DMDQIN

[68]

Tripathi U, Misra A, Tchkonia T, Kirkland JL. Impact of senescent cell subtypes on tissue dysfunction and repair: Importance and research questions. Mech Ageing Dev. 2021;198:111548 doi: 10.1016/j.mad.2021.111548 EDN: EVIZCP

[69]

Shvedova M, Samdavid Thanapaul RJR, Thompson EL, et al. Cellular senescence in aging, tissue repair, and regeneration. Plast Reconstr Surg. 2022;150:4S–11S. doi: 10.1097/PRS.0000000000009667 EDN: NXWUCH

[70]

Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development. 2019;146(20):dev151837. doi: 10.1242/dev.151837 EDN: XMSQIZ

Funding

Ministry of Science and Higher Education of the Russian FederationМинистерство науки и высшего образования Российской ФедерацииMinistry of Science and Higher Education of the Russian Federation(FURG-2025-0032)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (903KB)

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/