Structural and Functional Features of the Glymphatic System: a Contemporary Perspective

Lyudmila A. Klyueva , Damir A. Averin , Karina A. Vasyanina

Morphology ›› 2025, Vol. 163 ›› Issue (2) : 93 -105.

PDF (1316KB)
Morphology ›› 2025, Vol. 163 ›› Issue (2) : 93 -105. DOI: 10.17816/morph.642000
Reviews
review-article

Structural and Functional Features of the Glymphatic System: a Contemporary Perspective

Author information +
History +
PDF (1316KB)

Abstract

The aging of the population in developed countries is a trend of major medical and social significance. In this regard, the study of the etiology and pathogenesis of neurodegenerative diseases, as well as the search for effective treatment methods, is of particular relevance. For a long time, it was believed that metabolic waste products were drained from the brain parenchyma’s interstitial fluid into the ventricular system. However, the discovery of the brain’s glymphatic system has significantly advanced our understanding of the mechanisms underlying pathologies associated with impaired clearance of metabolites from the brain. This scientific review outlines the main directions in the study of the functional morphology of the glymphatic system under normal conditions. It provides a detailed description of two theories of cerebrospinal fluid outflow and presents a critical analysis of both Russian and international research data. Under normal conditions, the function of the glymphatic system is influenced by heart rate, intracranial pressure, pulse and arterial pressure, as well as the phase of the respiratory cycle. In addition, sleep quality, head position during sleep, and exposure to toxic substances directly affect glymphatic system activity. The review also highlights recent data on the glymphatic system of the visual organs. Further research into the morphofunctional characteristics of the glymphatic system under normal conditions may greatly expand our fundamental understanding of disease pathogenesis and contribute to the development of new approaches to treatment and prevention.

Keywords

glymphatic system / perivascular space / Virchow–Robin space / cerebrospinal fluid

Cite this article

Download citation ▾
Lyudmila A. Klyueva, Damir A. Averin, Karina A. Vasyanina. Structural and Functional Features of the Glymphatic System: a Contemporary Perspective. Morphology, 2025, 163(2): 93-105 DOI:10.17816/morph.642000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi: 10.1038/nature14432

[2]

Aspelund A, Antila S, Proulx S, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Ex Med. 2015;212(7):991–999. doi: 10.1084/jem.20142290

[3]

Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748

[4]

Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–2599. doi: 10.1007/s11064-015-1581-6 EDN: LVWHHY

[5]

Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181–194. doi: 10.1007/s10571-015-0273-8 EDN: YADTDL

[6]

Carare RO, Bernardes-Silva M, Newman, TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131–144. doi: 10.1111/j.1365-2990.2007.00926.x

[7]

Weller RO, Subash M, Preston SD, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 2008;18(2):253–266. doi: 10.1111/j.1750-3639.2008.00133.x

[8]

Schley D, Carare-Nnadi R, Please C, et al. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006;238(4):962–974. doi: 10.1016/j.jtbi.2005.07.005

[9]

Nikolenko VN, Oganesyan MV, Yakhno NN, et al. The brain’s glymphatic system: physiological anatomy and clinical perspectives. Nevrologiya, Neiropsikhiatriya, Psikhosomatika (Neurology, Neuropsychiatry, Psychosomatics). 2018;10(4):94–100. (In Russ.) doi: 10.14412/2074-2711-2018-4-94-100 EDN: YPVCQX

[10]

Gao Y, Liu K, Zhu J. Glymphatic system: An emerging therapeutic approach for neurological disorders. Front Mol Neurosci. 2023;16:1138769. doi: 10.3389/fnmol.2023.1138769 EDN: XHTJCY

[11]

Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–191. doi: 10.1038/s41586-018-0368-8 EDN: CZJYCP

[12]

Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–3219. doi: 10.1172/JCI90603

[13]

Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. 2015;6(1):6807. doi: 10.1038/ncomms7807

[14]

Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–56. doi: 10.1126/science.abb8739 EDN: KSLRNK

[15]

Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2018;13:379–394. doi: 10.1146/annurev-pathol-051217-111018

[16]

Buccellato FR, D’Anca M, Serpente M, et al. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis. Biomedicines. 2022;10(9):2261. doi: 10.3390/biomedicines10092261 EDN: YFFZUH

[17]

Mestre H, Mori Y, Nedergaard M. The brain’s glymphatic system: current controversies. Trends Neurosci. 2020;43(7):458–466. doi: 10.1016/j.tins.2020.04.003 EDN: BJPJLC

[18]

Shulyatnikova T, Hayden MR. Why are perivascular spaces important? Medicina (Kaunas). 2023;59(5):917. doi: 10.3390/medicina59050917 EDN: CKJTOA

[19]

Naganawa S, Taoka T, Ito R, Kawamura M. The glymphatic system in humans: investigations with magnetic resonance imaging. Invest Radiol. 2024;59(1):1–12. doi: 10.1097/RLI.0000000000000969 EDN: ZYIPIY

[20]

Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878. doi: 10.1038/s41467-018-07318-3 EDN: GYEQWF

[21]

Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022;102(2):1025–1151. doi: 10.1152/physrev.00031.2020 EDN: VPPEJG

[22]

Oliveira LM, Figueiredo EG, Peres CMA. The glymphatic system: a review. Arquivos Brasileiros de Neurocirurgia. 2018;37(3):190–195. doi: 10.1055/s-0038-1667052

[23]

Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience. 2004;127(3):685–693. doi: 10.1016/j.neuroscience.2004.03.016

[24]

Peng S, Liu J, Liang C, et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis. 2023;179:106035. doi: 10.1016/j.nbd.2023.106035 EDN: RIVNCF

[25]

Yu L, Hu X, Li H, Zhao Y. Perivascular spaces, glymphatic system and MR. Front Neurol. 2022;13:844938. doi: 10.3389/fneur.2022.844938 EDN: EIZRQJ

[26]

Oshio K, Watanabe H, Song Y, et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005;19(1):76–78. doi: 10.1096/fj.04-1711fje

[27]

Zelenina M. Regulation of brain Aquaporins. Neurochem Int. 2010;57(4):468–488. doi: 10.1016/j.neuint.2010.03.022 EDN: MYUZSP

[28]

Raghunandan A, Ladron-de-Guevara A, Tithof J, et al. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. Elife. 2021;10:e65958. doi: 10.7554/eLife.65958 EDN: KPTRVL

[29]

Kelley DH, Thomas JH. Cerebrospinal fluid flow. Annu Rev Fluid Mech. 2023;55(1):237–264. doi: 10.1146/annurev-fluid-120720-011638 EDN: FNBKRB

[30]

Key A, Retzius G. Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson & Wallin, 1876. (In German)

[31]

Löwhagen P, Johansson B, Nordborg C. The nasal route of cerebrospinal fluid drainage in man. A light–microscope study. Neuropathol Appl Neurobiol. 1994;20(6):543–550. doi: 10.1111/j.1365-2990.1994.tb01008.x

[32]

Walter BA, Valera VA, Takahashi S, Ushiki T. The olfactory route for cerebrospinal fuid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol. 2006;32(4):388–396. doi: 10.1111/j.1365-2990.2006.00737.x

[33]

Ringstad G, Eide PK. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat Commun. 2020;11(1):354. doi: 10.1038/s41467-019-14195-x EDN: ZGSMVV

[34]

Naganawa S, Ito R, Kawamura M, et al. Association between the putative meningeal lymphatics at the posterior wall of the sigmoid sinus and delayed contrast-agent elimination from the cerebrospinal fluid. Magn Reson Med Sci. 2024; 23(1):80–91. doi: 10.2463/mrms.mp.2022-0110

[35]

Csanda E, Obal F, Obal F. Central nervous system and lymphatic system. In: Foldi M, Casley-Smith J, editors. Lymphangiography. New York: Schattauer Verlag; 1983. P:41–58.

[36]

Caversaccio M, Peschel O, Arnold W. The drainage of cerebrospinal fuid into the lymphatic system of the neck in humans. ORL J Otorhinolaryngol Relat Spec. 1996;58(3):164–166. doi: 10.1159/000276818

[37]

Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8(1):7194. doi: 10.1038/s41598-018-25666-4 EDN: RQKTTB

[38]

Gao Y, Liu K, Zhu J. Glymphatic system: an emerging therapeutic approach for neurological disorders. Front Mol Neurosci. 2023;16:1138769. doi: 10.3389/fnmol.2023.1138769 EDN: XHTJCY

[39]

Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–378. doi: 10.1126/science.1241224

[40]

Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):4411. doi: 10.1038/s41467-020-18115-2 EDN: JITSQF

[41]

Turner KL, Gheres KW, Proctor EA, Drew PJ. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. Elife. 2020;9:e62071. doi: 10.7554/eLife.62071 EDN: OHFAMW

[42]

Lee H, Xie L, Yu M, et al. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034–11044. doi: 10.1523/JNEUROSCI.1625-15.2015

[43]

Castriotta RJ, Murthy JN. Sleep disorders in patients with traumatic brain injury: a review. CNS Drugs. 2011;25(3):175–185. doi: 10.2165/11584870-000000000-00000 EDN: CSSJZL

[44]

Stefani A, Högl B. Sleep in Parkinson’s disease. Neuropsychopharmacology. 2020;45(1):121–128. doi: 10.1038/s41386-019-0448-y

[45]

Veauthier C. Sleep disorders in multiple sclerosis. Review. Curr Neurol Neurosci Rep. 2015;15(5):21. doi: 10.1007/s11910-015-0546-0 EDN: CZHBVJ

[46]

Bubu OM, Brannick M, Mortimer J, et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep. 2017;40(1). doi: 10.1093/sleep/zsw032

[47]

Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–861. doi: 10.1002/ana.24271

[48]

Nycz B, Mandera M. The features of the glymphatic system. Auton Neurosci. 2021;232:102774. doi: 10.1016/j.autneu.2021.102774 EDN: MDHYDG

[49]

Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878. doi: 10.1038/s41467-018-07318-3 EDN: GYEQWF

[50]

Zeppenfeld DM, Simon M, Haswell J, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–99. doi: 10.1001/jamaneurol.2016.4370

[51]

Lundgaard I, Wang W, Eberhardt A, et al. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep. 2018;8(1):2246. doi: 10.1038/s41598-018-20424-y EDN: PXORSD

[52]

Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299–1309. doi: 10.1172/JCI67677

[53]

Cheng Y, Liu X, Ma X, et al. Alcohol promotes waste clearance in the CNS via brain vascular reactivity. Free Radic Biol Med. 2019;143:115–126. doi: 10.1016/j.freeradbiomed.2019.07.029

[54]

Ding Z, Fan X, Zhang Y, et al. The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci. 2023;15:1179988. doi: 10.3389/fnagi.2023.1179988 EDN: JMURCO

[55]

Wang X, Lou N, Eberhardt A, et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci Transl Med. 2020;12(536):eaaw3210. doi: 10.1126/scitranslmed.aaw3210 EDN: AYNGZA

[56]

Delle C, Wang X, Nedergaard M. The ocular glymphatic system-current understanding and future perspectives. Int J Mol Sci. 2024;25(11):5734. doi: 10.3390/ijms25115734 EDN: WOCTNA

[57]

Wostyn P, Nedergaard M. A new look at ocular glymphatic transport in space. J Appl Physiol. 2024;136(5):1129–1130. doi: 10.1152/japplphysiol.00169.2024 EDN: NGOEXN

[58]

Uddin N, Rutar M. Ocular lymphatic and glymphatic systems: implications for retinal health and disease. Int J Mol Sci. 2022;23(17):10139. doi: 10.3390/ijms231710139 EDN: LCLICO

[59]

Rangroo Thrane V, Hynnekleiv L, Wang X, et al. Twists and turns of ocular glymphatic clearance — new study reveals surprising findings in glaucoma. Acta Ophthalmol. 2021;99(2):e283–e284. doi: 10.1111/aos.14524 EDN: TEWWAJ

[60]

Kondratyev AN, Tsentsiper LM. Glymphatic system of the brain: structure and practical significance. The Russian journal of Anesthesiology and Reanimatology. 2019;6:72–80. (In Russ.) doi: 10.17116/anaesthesiology201906172 EDN: JSFFNN

[61]

Yankova GS, Bogomyakova OB. Brain lymphatic drainage system — visualization opportunities and current state of the art. Complex Issues of Cardiovascular Diseases. 2020;9(3):81–89. (In Russ.) doi: 10.17802/2306-1278-2020-9-3-81-89 EDN: LJRBZU

[62]

Dolzhikov AA, Shevchenko OA, Pobeda AS, Dolzhikova IN. Functional and clinical morphology of Virchow-Robin spaces: from the discovery up to the newest theories. Humans and their health. 2022;25(2):70–82. (In Russ.) doi: 10.21626/vestnik/2022-1/06 EDN: RAERTM

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1316KB)

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/