The Blood–Epididymis Barrier: Morphological, Physiological, Immunological and Seasonal Aspects and the Impact of Destabilizing Factors

Marat F. Ryskulov , Nikolay N. Shevlyuk

Morphology ›› 2025, Vol. 163 ›› Issue (2) : 106 -114.

PDF (872KB)
Morphology ›› 2025, Vol. 163 ›› Issue (2) : 106 -114. DOI: 10.17816/morph.637310
Reviews
review-article

The Blood–Epididymis Barrier: Morphological, Physiological, Immunological and Seasonal Aspects and the Impact of Destabilizing Factors

Author information +
History +
PDF (872KB)

Abstract

Spermatozoa entering the epididymis from the testis are unable to actively move and do not possess fertilizing ability. These functions are acquired within the lumen of the epididymal ducts, where the components of the blood–epididymis barrier create a specialized environment. The blood–epididymis barrier restricts paracellular transport and stimulates receptor-mediated transport of macromolecules across the epididymal epithelium. The blood–epididymis barrier consists of a pseudostratified columnar epithelium resting on a basement membrane, loose connective tissue of the lamina propria, and capillary endothelium located on its own basement membrane. Apical tight junctions and adherens junctions between adjacent principal cells of the pseudostratified epithelium play a key role in the blood–epididymis barrier’s function. Tight junctions are composed of various families of transmembrane proteins. The vascular component of the blood–epididymis barrier features continuous endothelium on an uninterrupted basement membrane. Alongside the epithelial and vascular components, interactions among dendritic cells, macrophages, and lymphocytes are critical in regulating blood–epididymis barrier permeability. In many species, the epididymis consists of 5 to 9 segments, each with distinct morphofunctional and biochemical characteristics. It has been shown that the barrier function becomes progressively more pronounced from the caput toward the cauda of the epididymis. Impaired function of intercellular junctions in the blood–epididymis barrier is considered a factor contributing to male infertility.

This review aimed to analyze the data on the morphofunctional organization of the blood–epididymis barrier.

Keywords

reproductive system / epididymis / epithelium / blood–epididymis barrier

Cite this article

Download citation ▾
Marat F. Ryskulov, Nikolay N. Shevlyuk. The Blood–Epididymis Barrier: Morphological, Physiological, Immunological and Seasonal Aspects and the Impact of Destabilizing Factors. Morphology, 2025, 163(2): 106-114 DOI:10.17816/morph.637310

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dubé E, Cyr DG. The blood-epididymis barrier and human male fertility. Adv Exp Med Biol. 2012;763:218–236. doi: 10.1007/978-1-4614-4711-5_11

[2]

Arrotéia KF, Garcia PV, Barbieri MF, et al. The epididymis: Embryology, structure, function and its role in fertilization and infertility. In: Pereira LV, editor. Embryology – Updates and Highlights on Classic Topics. InTech; 2012. doi: 10.5772/35847

[3]

Shevlyuk NN, Blinova EV, Egemberdieva RE, et al. The relationship of gametes and somatic cells of male gonads of vertebrates: evolutionary, age and seasonal aspects, adaptive and reactive transformations under the action of destabilizing factors. Journal of Anatomy and Histopathology. 2023;12(4):76–88. (In Russ.) doi: 10.18499/2225-7357-2023-12-4-76-88 EDN: IOYGCV

[4]

Shevlyuk NN, Ryskulov MF. The appendage of the testis: morphogenesis, structural and functional characteristics in physiological and pathological conditions. Journal of Anatomy and Histopathology. 2022;11(2):87–98. (In Russ.) doi: 10.18499/2225-7357-2022-11-2-87-98 EDN: MQMQUZ

[5]

Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod. 2011;84(5):851–858. doi: 10.1095/biolreprod.110.087452

[6]

Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–227. doi: 10.1093/humupd/dmn055

[7]

Björkgren I, Sipilä P. The impact of epididymal proteins on sperm function. Reproduction. 2019;158(5):R155–R167. doi: 10.1530/REP-18-0589

[8]

Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol. 2018;81:207–219. doi: 10.1016/j.reprotox.2018.08.013

[9]

Han SY, Lee KH. The expression patterns of Connexin isoforms in the rat caput epididymis during postnatal development. Journal of Animal Science and Technology. 2013;55(4):249–255. doi: 10.5187/jast.2013.55.4.249

[10]

Ivanova VV, Mil’to IV, Sukhodolo IV. Contemporary view of the molecular and structural interaction of cells during spermatogenesis in rat. Morphology. 2019;155(3):73–81. (In Russ.) EDN: ZZNEMH

[11]

Cyr DG, Dubé E, Dufresne J, Gregory M. Development of biological tools to study claudins in the male reproductive tract. Methods Mol Biol. 2011;762:259–273. doi: 10.1007/978-1-61779-185-7_18

[12]

Awobajo FO, Raji Y, Akinloye AK. Histomorphometric changes in the testes and epididymis of Wistar strain albino rats following fourteen days oral administration of therapeutic doses of some antibiotics. International Journal of Morphology. 2010;28(3):1281–1287. doi: 10.4067/s0717-95022010000400047

[13]

Pelletier RM. Blood barriers of the epididymis and vas deferens act asynchronously with the blood barrier of the testis in the mink (Mustela vison). Microsc Res Tech. 1994;27(4):333–349. doi: 10.1002/jemt.1070270408

[14]

Suzuki F, Racey PA. Fine structural changes in the epididymal epithelium of moles (Talpa europaea) throughout the year. J Reprod Fertil. 1976;47(1):47–54. doi: 10.1530/jrf.0.0470047

[15]

Lorenzana MG, López-Wilchis R, Gómez CS, Aranzabal MC. A light and scanning electron microscopic study of the epididymis active state of the endemic Mexican rodent Peromyscus winkelmanni (Carleton) (Rodentia: Muridae). Anat Histol Embryol. 2007;36(3):230–240. doi: 10.1111/j.1439-0264.2006.00752.x

[16]

Bidway PP, Bawa SR. Correlative study of the ultrastructure and the physiology of the seasonal regression of the epididymal epithelium in the hedgehog Paraechinus micropus. Andrologia. 1981;13(1):20–32. doi: 10.1111/j.1439-0272.1981.tb00003.x

[17]

Cyr DG, Robaire B, Hermo L. Structure and turnover of junctional complexes between principal cells of the rat epididymis. Microsc Res Tech. 1995;30(1):54–66. doi: 10.1002/jemt.1070300105

[18]

Turner TT, D`Addario DA, Howards SS. The blood epididymal barrier to [3H]-inulin in intact and vasectomized hamsters. Invest Urol. 1981;19(2):89–91.

[19]

López ML, Fuentes P, Retamal C, De Souza W. Regional differentiation of the blood-epididymis barrier in stallion (Equus caballus). J Submicrosc Cytol Pathol. 1997;29(3):353–63.

[20]

Abdel-Maksoud FM, Hussein MT, Attaai A. Seasonal variation of the intraepithelial gland in camel epididymis with special reference to autophagosome. Microsc Microanal. 2019;25(4):1052–1060. doi: 10.1017/S1431927619014557

[21]

Abdel-Maksoud FM, Zayed AE, Abdelhafez EA, Hussein T. Seasonal variations of the epididymis in donkeys (Equus asinus) with special reference to blood epididymal barrier. Microsc Res Tech. 2024;87(2):326–338. doi: 10.1002/jemt.24436 EDN: QOONSQ

[22]

Castro MM, Kim B, Games PD, et al. Distribution pattern of ZO-1 and claudins in the epididymis of vampire bats. Tissue Barriers. 2020;8(3):1779526. doi: 10.1080/21688370.2020.1779526 EDN: HGJWJG

[23]

Bai GW, Han DY, Yang QY, et al. Oxidative stress induces damage to epididymal epithelial tight junction protein ZO-1 and impairs epididymal function in varicocele rats. Zhonghua Nan Ke Xue. 2019;25(5):302–308. (In Chinese)

[24]

Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod. 2019;100(1):123–132. doi: 10.1093/biolre/ioy171

[25]

Liman N. The abundance and localization of claudin-1 and -5 in the adult tomcats (Felis catus) testis, tubules rectus, rete testis, efferent ductules, and epididymis. Anat Rec (Hoboken). 2023;306(8):2153–2169. doi: 10.1002/ar.25165 EDN: XSCHTU

[26]

Dubé E, Chan PTK, Hermo L, Cyr DG. Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biol Reprod. 2007;76:1034–1044. doi: 10.1095/biolreprod.106.059246 EDN: MGHCWZ

[27]

Cyr DG, Gregory M, Dubé E, et al. Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J Androl. 2007;9(4):463–375. doi: 10.1111/j.1745-7262.2007.00308x

[28]

Yoon SI, Park CJ, Nah WH, Gye MC. Expression of occludin in testis and epididymis of wild rabbits, Lepus sinensis coreanus. Reprod Domest Anim. 2009;44(5):745–750. doi: 10.1111/j.1439-0531.2008.01064.x

[29]

Cyr DG, Robaire B, Hermo L. Structure and turnover of junctional complexes between principal cells of the rat epididymis. Microsc Res Tech. 1995;30(1):54–66. doi: 10.1002/jemt.1070300105

[30]

Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl. 2019;21(6):531–539. doi: 10.4103/aja.aja_11_19

[31]

Liu Q, Xie W, Xiao Y, et al. Seasonal expressions of oxytocin and oxytocin receptor in epididymis of the male muskrat (Ondatra zibethicus). Theriogenology. 2019;124:24–31. doi: 10.1016/j.theriogenology.2018.10.009

[32]

Yuan Z, Wang Y, Yu W, et al. Seasonal expressions of oxytocin and oxytocin receptor in the epididymides in the wild ground squirrels (Citellus Dauricus Brandt). Gen Comp Endocrinol. 2020;289:113391. doi: 10.1016/j.ygcen.2020.113391 EDN: QTXQUU

[33]

Michel V, Pilatz A, Hedger MP, Meinhardt A. Epididymitis: revelations at the convergence of clinical and basic sciences. Asian J Androl. 2015;17(5):756–763. doi: 10.4103/1008-682X.155770 EDN: XZRFNL

[34]

Wigby S, Suarez SS, Lazzaro BP, et al. Sperm success and immunity. Curr Top Dev Biol. 2019;135:287–313. doi: 10.1016/bs.ctdb.2019.04.002

[35]

Da Silva N, Cortez-Retamozo V, Reinecker HC, et al. A dense network of dendritic cells populates the murine epididymis. Reproduction. 2011;141(5):653–663. doi: 10.1530/REP-10-0493

[36]

Mendelsohn AC, Sanmarco LM, Spallanzani RG, et al. From initial segment to cauda: a regional characterization of mouse epididymal CD11c+ mononuclear phagocytes based on immune phenotype and function. Am J Physiol Cell Physiol. 2020;319(6):C997–C1010. doi: 10.1152/ajpcell.00392.2020 EDN: DZIXNB

[37]

Shi X, Zhao H, Kang Y, et al. The role of mononuclear phagocytes in the testes and epididymis. Int J Mol Sci. 2022;24(1):53. doi: 10.3390/ijms24010053 EDN: EZIENE

[38]

Pleuger С, Ai D, Hoppe ML, et al. The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis. Elife. 2022;11:e82193. doi: 10.7554/eLife.82193 EDN: YIPKII

[39]

Barrachina F, Ottino K, Tu LJ, et al. CX3CR1 deficiency leads to impairment of immune surveillance in the epididymis. Cell Mol Life Sci. 2022;80(1):15. doi: 10.1007/s00018-022-04664-w EDN: RJTXES

[40]

Da Silva N, Barton CR. Macrophages and dendritic cells in the post-testicular environment. Cell Tissue Res. 2016;363(1):97–104. doi: 10.1007/s00441-015-2270-0 EDN: TMSSWJ

[41]

Da Silva N, Smith TB. Exploring the role of mononuclear phagocytes in the epididymis. Asian J Androl. 2015;17(4):591–596. doi: 10.4103/1008-682X.153540

[42]

Smith TB, Cortez-Retamozo V, Grigoryeva LS, et al. Mononuclear phagocytes rapidly clear apoptotic epithelial cells in the proximal epididymis. Andrology. 2014;2(5):755–762. doi: 10.1111/j.2047-2927.2014.00251.x

[43]

Voisin A, Damon-Soubeyrand C, Bravard S, et al. Differential expression and localisation of TGF-β isoforms and receptors in the murine epididymis. Sci Rep. 2020;10(1):995. doi: 10.1038/s41598-020-57839-5 EDN: ZCXPZU

[44]

Battistone MA, Mendelsohn AC, Spallanzani RG, et al. Region-specific transcriptomic and functional signatures of mononuclear phagocytes in the epididymis. Mol Hum Reprod. 2020;26(1):14–29. doi: 10.1093/molehr/gaz059

[45]

Voisin A, Whitfield M, Damon-Soubeyrand C, et al. Comprehensive overview of murine epididymal mononuclear phagocytes and lymphocytes: Unexpected populations arise. J Reprod Immunol. 2018;126:11–17. doi: 10.1016/j.jri.2018.01.003

[46]

Guazzone VA. Exploring the role of antigen presenting cells in male genital tract. Andrologia. 2018;50(11):e13120. doi: 10.1111/and.13120

[47]

Gregory M, Cyr DG. The blood-epididymis barrier and inflammation. Spermatogenesis. 2014;4(2):e979619. doi: 10.4161/21565562.2014.979619

[48]

Heuser A, Mecklenburg L, Ockert D, et al. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granulomas. Toxicol Pathol. 2013;41(4):615–627. doi: 10.1177/0192623312463783

[49]

Sheng Z, Gao N, Fan D, et al. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis. 2021;15(3):e0009211. doi: 10.1371/journal.pntd.0009211 EDN: OUIAZJ

[50]

Dube E, Hermo L, Chan PT, Cyr DG. Alterations in the human blood-epididymis barrier in obstructive azoospermia and the development of novel epididymal cell lines from infertile men. Biol Reprod. 2010;83(4):584–596. doi: 10.1095/biolreprod.110.084459 EDN: NYZHUZ

[51]

Hermo L, Korah N, Gregory M, et al. Structural alterations of epididymal epithelial cells in cathepsin A-deficient mice affect the blood-epididymal barrier and lead to altered sperm motility. J Androl. 2007;28(5):784–797. doi: 10.2164/jandrol.107.002980

[52]

Park YJ, Pang WK, Ryu DY, et al. Bisphenol A exposure increases epididymal susceptibility to infection in mice. Ecotoxicol Environ Saf. 2021;208:111476. doi: 10.1016/j.ecoenv.2020.111476 EDN: YSHKOP

[53]

Tanaka Y, Suganuma K, Watanabe K, Kobayashi Y. Epididymitis in mice experimentally infected with Trypanosoma equiperdum: a histopathological and immunohistochemical study. J Comp Pathol. 2023;201:1–9. doi: 10.1016/j.jcpa.2022.12.005 EDN: YNJMVW

[54]

Zhang M, Li H, Ma J, et al. Effects of zinc combined with metformin on zinc homeostasis, blood-epididymal barrier, and epididymal absorption in male diabetic mice. Biol Trace Elem Res. 2024;203(1):291–304. doi: 10.1007/s12011-024-04171-y EDN: XPHHYH

[55]

Sahu C, Dwivedi DK, Jena GB. Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat. Hum Exp Toxicol. 2020;39(9):1235–1256. doi: 10.1177/0960327120914963 EDN: GMKBNV

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (872KB)

1078

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/