Neuronal reprogramming: approaches, challenges, and prospects
Alexandra V. Sentyabreva
Morphology ›› 2024, Vol. 162 ›› Issue (4) : 436 -453.
Neuronal reprogramming: approaches, challenges, and prospects
The development of technologies and methods for reprogramming cells at different stages of differentiation in vitro, ex vivo, and in vivo has become one of the most significant scientific and technological advances of recent decades. Each year, an increasing number of experimental studies report successful direct reprogramming of differentiated cells, including the generation of specialized neurons from glial cells in vivo. These technologies hold the potential to advance regenerative medicine to a fundamentally new level. However, despite the growing understanding of differentiation mechanisms and phenotypic plasticity, as well as expanding capabilities to guide these processes, the clinical application of cellular reprogramming remains a major challenge. This review discusses the definitions of cellular plasticity, recent advances in neuronal cellular reprogramming approaches using direct and indirect methods, and the key barriers to their clinical implementation.
genetic engineering / gene therapy / direct cellular reprogramming / induced pluripotent stem cells / neurons / glial cells
| [1] |
Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature. 2017;548(7665):103–107. doi: 10.1038/nature23283 |
| [2] |
Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–598. doi: 10.1038/nature11044 |
| [3] |
Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–386. doi: 10.1016/j.cell.2010.07.002 |
| [4] |
Cavelti-Weder C, Zumsteg A, Li W, Zhou Q. Reprogramming of pancreatic acinar cells to functional beta-cells by in vivo transduction of a polycistronic construct containing Pdx1, Ngn3, MafA in mice. Curr Protoc Stem Cell Biol. 2017;40:4A.10.1–4A.10.12. doi: 10.1002/cpsc.21 |
| [5] |
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s disease and inflammaging. Brain Sci. 2022;12(9):1237. doi: 10.3390/brainsci12091237 |
| [6] |
Tai W, Wu W, Wang LL, et al. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell. 2021;28(5):923–937.e4. doi: 10.1016/j.stem.2021.02.009 |
| [7] |
Tang Y, Wu Q, Gao M, et al. Restoration of visual function and cortical connectivity after ischemic injury through neurod1-mediated gene therapy. Front Cell Dev Biol. 2021;9:720078. doi: 10.3389/fcell.2021.720078 |
| [8] |
Chen YC, Ma NX, Pei ZF, et al. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther. 2020;28(1):217–234. doi: 10.1016/j.ymthe.2019.09.003 |
| [9] |
Todd L, Hooper MJ, Haugan AK, et al. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep. 2021;37(3):109857. doi: 10.1016/j.celrep.2021.109857 |
| [10] |
Le N, Vu TD, Palazzo I, et al. Robust reprogramming of glia into neurons by inhibition of Notch signaling and nuclear factor I (NFI) factors in adult mammalian retina. Sci Adv. 2024;10(28):eadn2091. doi: 10.1126/sciadv.adn2091 |
| [11] |
Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582(7813):550–556. doi: 10.1038/s41586-020-2388-4 |
| [12] |
Wu Z, Parry M, Hou XY, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat Commun. 2020;11(1):1105. doi: 10.1038/s41467-020-14855-3 |
| [13] |
Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–184. doi: 10.1146/annurev.neuro.051508.135600 |
| [14] |
Malatesta P, Appolloni I, Calzolari F. Radial glia and neural stem cells. Cell Tissue Res. 2008;331(1):165–178. doi: 10.1007/s00441-007-0481-8 |
| [15] |
Miranda-Negrón Y, García-Arrarás JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci. 2022;16:1006037. doi: 10.3389/fnins.2022.1006037 |
| [16] |
Howard BM, Mo Z, Filipovic R, et al. Radial glia cells in the developing human brain. Neuroscientist. 2008;14(5):459–473. doi: 10.1177/1073858407313512 |
| [17] |
Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–348. doi: 10.1007/s11065-010-9148-4 |
| [18] |
Kobat SG, Turgut B. Importance of Müller cells. Beyoglu Eye J. 2020;5(2):59–63. doi: 10.14744/bej.2020.28290 |
| [19] |
Yamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002;77(2):94–108. doi: 10.1046/j.0022-7722.2002.00021.x |
| [20] |
Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362(6411):181–185. doi: 10.1126/science.aat0473 |
| [21] |
Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601. doi: 10.1016/j.neuron.2013.10.037 |
| [22] |
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702. doi: 10.1016/j.neuron.2011.05.001 |
| [23] |
Purves D, Augustine GJ, Fitzpatrick D. Neuroscience. 6th ed. New York Oxford: Oxford University Press; 2018. |
| [24] |
Jurkowski MP, Bettio L, K Woo EK, et al. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444 |
| [25] |
Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–1083. doi: 10.1016/j.cell.2014.01.044 |
| [26] |
Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in human brain and their decline during infancy. Nature. 2011;478(7369):382–386. doi: 10.1038/nature10487 |
| [27] |
Semënov MV. Adult hippocampal neurogenesis is a developmental process involved in cognitive development. Front Neurosci. 2019;13:159. doi: 10.3389/fnins.2019.00159 |
| [28] |
Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019;2019:baz046. doi: 10.1093/database/baz046 |
| [29] |
Mori T, Buffo A, Götz M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol. 2005;69:67–99. doi: 10.1016/S0070-2153(05)69004-7 |
| [30] |
Ninkovic J, Steiner-Mezzadri A, Jawerka M, et al. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell Stem Cell. 2013;13(4):403–418. doi: 10.1016/j.stem.2013.07.002 |
| [31] |
Ortega F, Gascón S, Masserdotti G, et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol. 2013;15(6):602–613. doi: 10.1038/ncb2736 |
| [32] |
Bast L, Calzolari F, Strasser MK, et al. Increasing neural stem cell division asymmetry and quiescence are predicted to contribute to the age-related decline in neurogenesis. Cell Rep. 2018;25(12):3231–3240.e8. doi: 10.1016/j.celrep.2018.11.088 |
| [33] |
Kalamakis G, Brüne D, Ravichandran S, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176(6):1407–1419.e14. doi: 10.1016/j.cell.2019.01.040 |
| [34] |
Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Cell Stem Cell. 2012;10(6):698–708. doi: 10.1016/j.stem.2012.05.012 |
| [35] |
Baklaushev VP, Yusubalieva GM, Samoilova EM, et al. Resident neural stem cell niches and regeneration: the splendors and miseries of adult neurogenesis. Russ J Dev Biol. 2022;53:159–179. doi: 10.1134/S1062360422030080 |
| [36] |
Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–381. doi: 10.1038/nature25975 |
| [37] |
Zhou Y, Su Y, Li S, et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature. 2022;607(7919):527–533. doi: 10.1038/s41586-022-04912-w |
| [38] |
Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25(4):554–560. doi: 10.1038/s41591-019-0375-9 |
| [39] |
Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, Ramouz A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J Emerg Med. 2017;8(1):34–38. doi: 10.5847/wjem.j.1920-8642.2017.01.006 |
| [40] |
Salmeron KE, Maniskas ME, Edwards DN, et al. Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. J Neuroinflammation. 2019;16(1):222. doi: 10.1186/s12974-019-1599-9 |
| [41] |
Grinchevskaya LR, Salikhova DI, Silachev DN, Goldshtein DV. Neural and glial regulation of angiogenesis in CNS in ischemic stroke. Bull Exp Biol Med. 2024;177(4):528–533. doi: 10.1007/s10517-024-06219-4 |
| [42] |
Zheng W, ZhuGe Q, Zhong M, et al. Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma. 2013;30(22):1872–1880. doi: 10.1089/neu.2010.1579 |
| [43] |
Bielefeld P, Martirosyan A, Martín-Suárez S, et al. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun. 2024;15(1):5222. doi: 10.1038/s41467-024-49299-6 |
| [44] |
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation. 2023;20(1):283. doi: 10.1186/s12974-023-02964-x |
| [45] |
2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700–789. doi: 10.1002/alz.12638 |
| [46] |
Schwab L, Richetin K, Barker R, Déglon N. Formation of hippocampal mHTT aggregates leads to impaired spatial memory, hippocampal activation and adult neurogenesis. Neurobiol Dis. 2017;102:105–112. doi: 10.1016/j.nbd.2017.03.005 |
| [47] |
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis after stroke: a therapeutic perspective. Transl Stroke Res. 2021;12(1):1–14. doi: 10.1007/s12975-020-00841-w |
| [48] |
Sentyabreva AV, Miroshnichenko EA, Melnikova EA, et al. Morphofunctional changes in brain and peripheral blood in adult and aged Wistar rats with AlCl3-induced neurodegeneration. Biomedicines. 2023;11(9):2336. doi: 10.3390/biomedicines11092336 |
| [49] |
Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--Atheromatous affection of arteries. 1858. Nutr Rev. 1989;47(1):23–25. doi: 10.1111/j.1753-4887.1989.tb02747.x |
| [50] |
Virchow R. Ueber Metaplasie. Archiv f. pathol. Anat. 1984;97:410–430. doi: 10.1007/BF02430434 |
| [51] |
Kumar V, Abbas AK, Aster JC. Robbins & Cotran pathologic basis of disease. 10th ed. Elsevier Health Sciences; 2020. |
| [52] |
Slack JM, Tosh D. Transdifferentiation and metaplasia — switching cell types. Curr Opin Genet Dev. 2001;11(5):581–586. doi: 10.1016/S0959-437X(00)00236-7 |
| [53] |
Slack JMW. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol. 2007;8(5):369–378. doi: 10.1038/nrm2146 |
| [54] |
Jenkins GJS, D’Souza FR, Suzen SH, et al. Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis. 2007;28(1):136–142. doi: 10.1093/carcin/bgl147 |
| [55] |
Gray MR, Donnelly RJ, Kingsnorth AN. The role of smoking and alcohol in metaplasia and cancer risk in Barrett’s columnar lined oesophagus. Gut. 1993;34(6):727–731. doi: 10.1136/gut.34.6.727 |
| [56] |
Peters EJ, Morice R, Benner SE, et al. Squamous metaplasia of the bronchial mucosa and its relationship to smoking. Chest. 1993;103(5):1429–1432. doi: 10.1378/chest.103.5.1429 |
| [57] |
Sangani RG, Deepak V, Ghio AJ, et al. Peribronchiolar metaplasia: a marker of cigarette smoke-induced small airway injury in a rural cohort. Clin Pathol. 2023;16:2632010X231209878. doi: 10.1177/2632010X231209878 |
| [58] |
Ogura Y, Ishii K, Kanda H, et al. Bisphenol A induces permanent squamous change in mouse prostatic epithelium. Differentiation. 2007;75(8):745–756. doi: 10.1111/j.1432-0436.2007.00177.x |
| [59] |
Amin MAS, Sonpol HMA, Gouda RHE, Aboregela AM. Bisphenol A enhances apoptosis, fibrosis, and biochemical fluctuations in the liver of adult male rats with possible regression after recovery. Anat Rec (Hoboken). 2023;306(1):213–225. doi: 10.1002/ar.25032 |
| [60] |
Holtzman MJ, Battaile JT, Patel AC. Immunogenetic programs for viral induction of mucous cell metaplasia. Am J Respir Cell Mol Biol. 2006;35(1):29–39. doi: 10.1165/rcmb.2006-0092SF |
| [61] |
Lee JS, Oh TY, Ahn BO, et al. Involvement of oxidative stress in experimentally induced reflux esophagitis and Barrett’s esophagus: clue for the chemoprevention of esophageal carcinoma by antioxidants. Mutat Res. 2001;480–481:189–200. doi: 10.1016/S0027-5107(01)00199-3 |
| [62] |
Feng C, Luo Y, Nian Y, et al. Diallyl disulfide suppresses the inflammation and apoptosis resistance induced by DCA through ROS and the NF-κB signaling pathway in human Barrett’s epithelial cells. Inflammation. 2017;40(3):818–831. doi: 10.1007/s10753-017-0526-4 |
| [63] |
Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia–cancer sequence. Nat Rev Cancer. 2017;17(10):594–604. doi: 10.1038/nrc.2017.68 |
| [64] |
Holmberg D, Ness-Jensen E, Mattsson F, et al. Risk of oesophageal adenocarcinoma in individuals with Barrett’s oesophagus. Eur J Cancer. 2017;75:41–46. doi: 10.1016/j.ejca.2016.12.037 |
| [65] |
King TC, editor. Front Matter. In: Elsevier’s Integrated Pathology. Saint Louis: Mosby; 2007. https://archive.org/details/elseviersintegra0000king |
| [66] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024 |
| [67] |
Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013;23(1):49–69. doi: 10.1038/cr.2012.175 |
| [68] |
Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–1284. doi: 10.1038/nbt.1503 |
| [69] |
Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122(Pt 19):3502–3510. doi: 10.1242/jcs.054783 |
| [70] |
Kim JB, Greber B, Araúzo-Bravo MJ, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461(7264):649–653. doi:10.1038/nature08436 |
| [71] |
Huang P, Sun L, Zhang L, Hui L. Conversion of fibroblasts to hepatocytes in vitro. Methods in Mol Biol. 2019;1905:93–101. doi: 10.1007/978-1-4939-8961-4_9 |
| [72] |
Du J, Liu X, Wong CWY, et al. Direct cellular reprogramming and transdifferentiation of fibroblasts on wound healing — Fantasy or reality? Chronic Dis Transl Med. 2023;9(3):191–199. doi: 10.1002/cdt3.77 |
| [73] |
He S, Chen J, Zhang Y, et al. Sequential EMT-MET induces neuronal conversion through Sox2. Cell Discov. 2017;3:17017. doi: 10.1038/celldisc.2017.17 |
| [74] |
Singh S, Howell D, Trivedi N, et al. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition. ELife. 2016;5:e12717. doi: 10.7554/eLife.12717 |
| [75] |
Hu S, Zhao MT, Jahanbani F, et al. Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells. JCI Insight. 2016;1(8):e85558. doi: 10.1172/jci.insight.85558 |
| [76] |
Scesa G, Adami R, Bottai D. iPSC preparation and epigenetic memory: does the tissue origin matter? Cells. 2021;10(6):1470. doi: 10.3390/cells10061470 |
| [77] |
Hargus G, Ehrlich M, Araúzo-Bravo MJ, et al. Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain. Cell Rep. 2014;8(6):1697–1703. doi: 10.1016/j.celrep.2014.08.014 |
| [78] |
Stone NR, Gifford CA, Thomas R, et al. Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming. Cell Stem Cell. 2019;25(1):87–102.e9. doi: 10.1016/j.stem.2019.06.012 |
| [79] |
Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22(6):410–424. doi: 10.1038/s41580-021-00335-z |
| [80] |
Belousova E, Salikhova D, Maksimov Y, et al. Proposed mechanisms of cell therapy for Alzheimer’s disease. Int J Mol Sci. 2024;25(22):12378. doi: 10.3390/ijms252212378 |
| [81] |
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. doi: 10.1126/science.1151526 |
| [82] |
Ay C, Reinisch A. Gene therapy: principles, challenges and use in clinical practice. Wien Klin Wochenschr. 2024. doi: 10.1007/s00508-024-02368-8 |
| [83] |
Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene. 2019;686:146–159. doi: 10.1016/j.gene.2018.11.069 |
| [84] |
Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–770. doi: 10.1038/nature07863 |
| [85] |
Chao J, Feng L, Ye P, et al. Therapeutic development for Canavan disease using patient iPSCs introduced with the wild-type ASPA gene. iScience. 2022;25(6):104391. doi: 10.1016/j.isci.2022.104391 |
| [86] |
Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–630. doi: 10.1016/j.stem.2010.08.012 |
| [87] |
Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8(6):633–638. doi: 10.1016/j.stem.2011.05.001 |
| [88] |
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–654. doi: 10.1126/science.1239278 |
| [89] |
Zhao T, Fu Y, Zhu J, et al. Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell. 2018;23(1):31–45.e7. doi: 10.1016/j.stem.2018.05.025 |
| [90] |
Chen G, Guo Y, Li C, et al. Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Rev Rep. 2020;16(3):511–523. doi: 10.1007/s12015-020-09965-w |
| [91] |
Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008;454(7204):646–650. doi: 10.1038/nature07061 |
| [92] |
Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–419. doi: 10.1016/j.cell.2009.01.023 |
| [93] |
Ring KL, Tong LM, Balestra ME, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11(1):100–109. doi: 10.1016/j.stem.2012.05.018 |
| [94] |
Thier MC, Hommerding O, Panten J, et al. Identification of embryonic neural plate border stem cells and their generation by direct reprogramming from adult human blood cells. Cell Stem Cell. 2019;24(1):166–182.e13. doi: 10.1016/j.stem.2018.11.015 |
| [95] |
Xu XL, Yang JP, Fu LN, et al. Direct reprogramming of porcine fibroblasts to neural progenitor cells. Protein Cell. 2014;5(1):4–7. doi: 10.1007/s13238-013-0015-y |
| [96] |
Ahlfors JE, Azimi A, El-Ayoubi R, et al. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res Ther. 2019;10(1):166. doi: 10.1186/s13287-019-1255-4 |
| [97] |
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett. 2017;591(24):3993–4008. doi: 10.1002/1873-3468.12906 |
| [98] |
El Wazan L, Urrutia-Cabrera D, Wong RCB. Using transcription factors for direct reprogramming of neurons in vitro. World J Stem Cells. 2019;11(7):431–444. doi: 10.4252/wjsc.v11.i7.431 |
| [99] |
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription factors of direct neuronal reprogramming in ontogenesis and ex vivo. Mol Biol. 2021;55:645–669. doi: 10.1134/S0026893321040087 |
| [100] |
Jiang H, Xu Z, Zhong P, et al. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun. 2015;6:10100. doi: 10.1038/ncomms10100 |
| [101] |
Qin H, Zhao AD, Sun ML, et al. Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res. 2020;7(1):52. doi: 10.1186/s40779-020-00284-2 |
| [102] |
Miskinyte G, Devaraju K, Grønning Hansen M, et al. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Res Ther. 2017;8(1):207. doi: 10.1186/s13287-017-0658-3 |
| [103] |
Rivetti Di Val Cervo P, Romanov RA, Spigolon G, et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol. 2017;35(5):444–452. doi: 10.1038/nbt.3835 |
| [104] |
Wang JH, Gessler DJ, Zhan W, et al. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. doi: 10.1038/s41392-024-01780-w |
| [105] |
Dashkoff J, Lerner EP, Truong N, et al. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Mol Ther Methods Clin Dev. 2016;3:16081. doi: 10.1038/mtm.2016.81 |
| [106] |
Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381–1389. doi: 10.1038/s41591-022-01866-4 |
| [107] |
Keam SJ. Eladocagene Exuparvovec: first approval. Drugs. 2022;82(13):1427–1432. doi: 10.1007/s40265-022-01775-3 |
| [108] |
Hubbard EJA. FLP/FRT and Cre/lox recombination technology in C. elegans. Methods. 2014;68(3):417–424. doi: 10.1016/j.ymeth.2014.05.007 |
| [109] |
Fischer KB, Collins HK, Callaway EM. Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors. Proc Natl Acad Sci U S A. 2019;116(52):27001–27010. doi: 10.1073/pnas.1915974116 |
| [110] |
Xie Y, Zhou J, Wang LL, et al. New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo. EBioMedicine. 2023;90:104531. doi: 10.1016/j.ebiom.2023.104531 |
| [111] |
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an Adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–298. doi: 10.1089/hum.2018.015 |
| [112] |
Fader KA, Pardo ID, Kovi RC, et al. Circulating neurofilament light chain as a promising biomarker of AAV-induced dorsal root ganglia toxicity in nonclinical toxicology species. Mol Ther Methods Clin Dev. 2022;25:264–277. doi: 10.1016/j.omtm.2022.03.017 |
| [113] |
Buss N, Lanigan L, Zeller J, et al. Characterization of AAV-mediated dorsal root ganglionopathy. Mol Ther Methods Clin Dev. 2022;24:342–354. doi: 10.1016/j.omtm.2022.01.013 |
| [114] |
Mueller C, Berry JD, McKenna-Yasek DM, et al. SOD1 Suppression with Adeno-associated virus and microRNA in familial ALS. N Engl J Med. 2020;383(2):151–158. doi: 10.1056/NEJMoa2005056 |
| [115] |
Delire B, De Martin E, Meunier L, et al. Immunotherapy and gene therapy: new challenges in the diagnosis and management of drug-induced liver injury. Front Pharmacol. 2022;12:786174. doi: 10.3389/fphar.2021.786174 |
| [116] |
Jodele S, Mizuno K, Sabulski A, Vinks AA. Adopting model-informed precision-dosing for Eculizumab in transplant associated-thrombotic microangiopathy to gene therapies. Clin Pharmacol Ther. 2023;114(3):511–514. doi: 10.1002/cpt.2966 |
| [117] |
Jodele S, Dandoy CE, Lane A, et al. Complement blockade for TA-TMA: lessons learned from a large pediatric cohort treated with eculizumab. Blood. 2020;135(13):1049–1057. doi: 10.1182/blood.2019004218 |
| [118] |
Falese L, Sandza K, Yates B, et al. Strategy to detect pre-existing immunity to AAV gene therapy. Gene Ther. 2017;24(12):768–778. doi: 10.1038/gt.2017.95 |
| [119] |
Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the challenges imposed by humoral immunity to AAV vectors to achieve safe and efficient gene transfer in seropositive patients. Front Immunol. 2022;13:857276. doi: 10.3389/fimmu.2022.857276 |
| [120] |
Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity — ‘one and done’ or ‘slower and lower’? Expert Opin Biol Ther. 2022;22(9):1067–1071. doi: 10.1080/14712598.2022.2060737 |
| [121] |
Servais L, Horton R, Saade D, et al. 261st ENMC International Workshop: Management of safety issues arising following AAV gene therapy. 17th–19th June 2022, Hoofddorp, The Netherlands. Neuromuscul Disord. 2023;33(11):884–896. doi: 10.1016/j.nmd.2023.09.008 |
| [122] |
Liu L, Michowski W, Kolodziejczyk A, Sicinski P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 2019;21(9):1060–1067. doi: 10.1038/s41556-019-0384-4 |
| [123] |
Bonaguidi MA, Wheeler MA, Shapiro JS, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011;145(7):1142–1155. doi: 10.1016/j.cell.2011.05.024 |
| [124] |
Lugert S, Vogt M, Tchorz JS, et al. Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun. 2012;3:670. doi: 10.1038/ncomms1670 |
| [125] |
Jung H, Kim SW, Kim M, et al. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions. Nat Commun. 2019;10(1):314. doi: 10.1038/s41467-018-08282-8 |
| [126] |
Katsuda T, Sussman JH, Ito K, et al. Cellular reprogramming in vivo initiated by SOX4 pioneer factor activity. Nat Commun. 2024;15(1):1761. doi: 10.1038/s41467-024-45939-z |
| [127] |
Barsouk A, Thandra KC, Saginala K, et al. Chemical risk factors of primary liver cancer: an update. Hepat Med. 2021;12:179–188. doi: 10.2147/HMER.S278070 |
| [128] |
Spathopoulou A, Podlesnic M, De Gaetano L, et al. Single-cell profiling of reprogrammed human neural stem cells unveils high similarity to neural progenitors in the developing central nervous system. Stem Cell Rev Rep. 2024;20(5):1325–1339. doi: 10.1007/s12015-024-10698-3 |
| [129] |
Mertens J, Paquola ACM, Ku M, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 2015;17(6):705–718. doi: 10.1016/j.stem.2015.09.001 |
| [130] |
Andrews MR, Czvitkovich S, Dassie E, et al. Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J Neurosci. 2009;29(17):5546–5557. doi: 10.1523/JNEUROSCI.0759-09.2009 |
| [131] |
Sasaki M, Radtke C, Tan AM, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009;29(47):14932–14941. doi: 10.1523/JNEUROSCI.2769-09.2009 |
| [132] |
Urdzíková L, Jendelová P, Glogarová K et al. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006;23(9):1379–1391. doi: 10.1089/neu.2006.23.1379 |
| [133] |
Freed CR, Zhou W, Breeze RE. Dopamine cell transplantation for Parkinson’s disease: the importance of controlled clinical trials. Neurotherapeutics. 2011;8(4):549–561. doi: 10.1007/s13311-011-0082-9 |
| [134] |
Sonntag KC, Song B, Lee N, et al. Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog Neurobiol. 2018;168:1–20. doi: 10.1016/j.pneurobio.2018.04.005 |
Eco-Vector
/
| 〈 |
|
〉 |