The role of connexin 43 in remodeling cardiomyocyte intercellular contacts in hypertrophic cardiomyopathy

Tatiana V. Sukhacheva , Roman A. Serov , Natalya V. Nizyaeva , Alina A. Akhmetshina , Leo A. Bockeria

Morphology ›› 2024, Vol. 162 ›› Issue (3) : 238 -247.

PDF (1050KB)
Morphology ›› 2024, Vol. 162 ›› Issue (3) : 238 -247. DOI: 10.17816/morph.634829
Original Study Articles
research-article

The role of connexin 43 in remodeling cardiomyocyte intercellular contacts in hypertrophic cardiomyopathy

Author information +
History +
PDF (1050KB)

Abstract

BACKGROUND: Intercellular gap junctions play a special role in the biology of cellular interactions. Their structural and dispositional changes can affect some biological functions, including disruption of electrical pulse propagation, which is primarily important for myocardial function.

AIM: The aim was to evaluate the morphological characteristics and localization of connexin 43-containing (Cx43+) gap — junctions and to determine their association with changes in myocardial morphology of the interventricular septum and clinical parameters in patients with hypertrophic cardiomyopathy.

MATERIALS AND METHODS: Morphometry and immunohistochemistry of interventricular septal myocardium were performed in patients with hypertrophic cardiomyopathy (n = 62, aged 18 to 61 years) compared with subjects without cardiovascular disease (n = 8, aged 25 to 54 years). Resection of the interventricular septum of the right ventricle was performed in patients with hypertrophic cardiomyopathy. Cx43+ gap junctions were identified in cardiomyocytes and their location and ultrastructural arrangement were determined. The data obtained were compared with clinical parameters of patients with hypertrophic cardiomyopathy.

RESULTS: In the interventricular septal myocardium of patients with hypertrophic cardiomyopathy, a redistribution of Cx43+ gap junctions from intercalated discs to the lateral surfaces of cardiomyocytes was observed. Gap junction changes are more frequent and more extensive in patients with hypertrophic cardiomyopathy than in the control group. They are typical of patients with the most severe morphological and functional cardiac condition, as evidenced by echocardiographic data such as significant thickening of the interventricular septum and a decrease in the volume of the left ventricular cavity. Morphologically complex remodeling of the myocardium is manifested by hypertrophy of the cardiomyocytes and partial loss of their myofibrils. Ultrastructurally, 28.1% of patients with hypertrophic cardiomyopathy had gap junction defects in the myocardium such as sites of localized divergence of intercalated disc membranes and abnormal ring structures formed by invaginations of gap junction-containing sarcolemma.

CONCLUSION: The location of Cx43+ gap junctions on the lateral surfaces of cardiomyocytes and changes in their ultrastructure suggest cardiomyocyte immaturity of the interventricular septum, which is typical of patients with hypertrophic cardiomyopathy and may cause a disruption of the electromechanical coupling of the myocardium.

Keywords

hypertrophic cardiomyopathy / cardiomyocytes / intercellular interactions / gap junctions / connexin 43

Cite this article

Download citation ▾
Tatiana V. Sukhacheva, Roman A. Serov, Natalya V. Nizyaeva, Alina A. Akhmetshina, Leo A. Bockeria. The role of connexin 43 in remodeling cardiomyocyte intercellular contacts in hypertrophic cardiomyopathy. Morphology, 2024, 162(3): 238-247 DOI:10.17816/morph.634829

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for right ventricular function. International Journal of Molecular Sciences. 2021;22(3):987. doi: 10.3390/ijms22030987

[2]

Boengler K., Rohrbach S., Weissmann N., Schulz R. Importance of Cx43 for right ventricular function // International Journal of Molecular Sciences. 2021. Vol. 22, N 3. ID: 987. doi: 10.3390/ijms22030987

[3]

Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for right ventricular function. International Journal of Molecular Sciences. 2021;22(3):987. doi: 10.3390/ijms22030987

[4]

Zhang M, Wang ZZ, Chen NH. Connexin 43 phosphorylation: implications in multiple diseases. Molecules. 2023;28(13):4914. doi: 10.3390/molecules28134914

[5]

Zhang M., Wang Z.Z., Chen N.H. Connexin 43 phosphorylation: implications in multiple diseases // Molecules. 2023. Vol. 28, N 13. ID: 4914. doi: 10.3390/molecules28134914

[6]

Zhang M, Wang ZZ, Chen NH. Connexin 43 phosphorylation: implications in multiple diseases. Molecules. 2023;28(13):4914. doi: 10.3390/molecules28134914

[7]

Takeuchi S, Akita T, Takagishi Y, et al. Disorganization of gap junction distribution in dilated atria of patients with chronic atrial fibrillation. Circulation Journal. 2006;70(5):575–582. doi: 10.1253/circj.70.575

[8]

Takeuchi S., Akita T., Takagishi Y., et al. Disorganization of gap junction distribution in dilated atria of patients with chronic atrial fibrillation // Circulation Journal. 2006. Vol. 70, N 5. P. 575–582. doi: 10.1253/circj.70.575

[9]

Takeuchi S, Akita T, Takagishi Y, et al. Disorganization of gap junction distribution in dilated atria of patients with chronic atrial fibrillation. Circulation Journal. 2006;70(5):575–582. doi: 10.1253/circj.70.575

[10]

Szeiffova Bacova B, Andelova K, Sykora M, et al. Distinct cardiac connexin-43 expression in hypertrophied and atrophied myocardium may impact the vulnerability of the heart to malignant arrhythmias. A pilot study. Physiological Research. 2023;72 Suppl. 1:S37–S45. doi: 10.33549/physiolres.935025

[11]

Szeiffova Bacova B., Andelova K., Sykora M., et al. Distinct cardiac connexin-43 expression in hypertrophied and atrophied myocardium may impact the vulnerability of the heart to malignant arrhythmias. A pilot study // Physiological Research. 2023. Vol. 72, Suppl. 1. P. S37–S45. doi: 10.33549/physiolres.935025

[12]

Szeiffova Bacova B, Andelova K, Sykora M, et al. Distinct cardiac connexin-43 expression in hypertrophied and atrophied myocardium may impact the vulnerability of the heart to malignant arrhythmias. A pilot study. Physiological Research. 2023;72 Suppl. 1:S37–S45. doi: 10.33549/physiolres.935025

[13]

Fry CH, Gray RP, Dhillon PS, et al. Architectural correlates of myocardial conduction: changes to the topography of cellular coupling, intracellular conductance, and action potential propagation with hypertrophy in Guinea-pig ventricular myocardium. Circulation Arrhythmia and Electrophysiology. 2014;7(6):1198–1204. doi: 10.1161/CIRCEP.114.001471

[14]

Fry C.H., Gray R.P., Dhillon P.S., et al. Architectural correlates of myocardial conduction: changes to the topography of cellular coupling, intracellular conductance, and action potential propagation with hypertrophy in Guinea-pig ventricular myocardium // Circulation Arrhythmia and Electrophysiology. 2014. Vol. 7, N 6. P. 1198–1204. doi: 10.1161/CIRCEP.114.001471

[15]

Fry CH, Gray RP, Dhillon PS, et al. Architectural correlates of myocardial conduction: changes to the topography of cellular coupling, intracellular conductance, and action potential propagation with hypertrophy in Guinea-pig ventricular myocardium. Circulation Arrhythmia and Electrophysiology. 2014;7(6):1198–1204. doi: 10.1161/CIRCEP.114.001471

[16]

Sepp R, Severs NJ, Gourdie RG. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart. 1996;76(5):412–417. doi: 10.1136/hrt.76.5.412

[17]

Sepp R., Severs N.J., Gourdie R.G. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy // Heart. 1996. Vol. 76, N 5. P. 412–417. doi: 10.1136/hrt.76.5.412

[18]

Sepp R, Severs NJ, Gourdie RG. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart. 1996;76(5):412–417. doi: 10.1136/hrt.76.5.412

[19]

Kostin S, Rieger M, Dammer S, et al. Gap junction remodeling and altered connexin43 expression in the failing human heart. Molecular and Cellular Biochemistry. 2003;242(1-2):135–144.

[20]

Kostin S., Rieger M., Dammer S., et al. Gap junction remodeling and altered connexin43 expression in the failing human heart // Molecular and Cellular Biochemistry. 2003. Vol. 242, N 1-2. P. 135–144.

[21]

Kostin S, Rieger M, Dammer S, et al. Gap junction remodeling and altered connexin43 expression in the failing human heart. Molecular and Cellular Biochemistry. 2003;242(1-2):135–144.

[22]

Noorman M, Hakim S, Kessler E, et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013;10(3):412–419. doi: 10.1016/j.hrthm.2012.11.018

[23]

Noorman M., Hakim S., Kessler E., et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy // Heart Rhythm. 2013. Vol. 10, N 3. P. 412–419. doi: 10.1016/j.hrthm.2012.11.018

[24]

Noorman M, Hakim S, Kessler E, et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013;10(3):412–419. doi: 10.1016/j.hrthm.2012.11.018

[25]

Hesketh GG, Shah MH, Halperin VL, et al. Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circulation Research. 2010;106(6):1153–1163. doi: 10.1161/CIRCRESAHA.108.182147

[26]

Hesketh G.G., Shah M.H., Halperin V.L., et al. Ultrastructure and regulation of lateralized connexin43 in the failing heart // Circulation Research. 2010. Vol. 106, N 6. P. 1153–1163. doi: 10.1161/CIRCRESAHA.108.182147

[27]

Hesketh GG, Shah MH, Halperin VL, et al. Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circulation Research. 2010;106(6):1153–1163. doi: 10.1161/CIRCRESAHA.108.182147

[28]

Yan J, Killingsworth C, Walcott G, et al. Molecular remodeling of Cx43, but not structural remodeling, promotes arrhythmias in an arrhythmogenic canine model of nonischemic heart failure. Journal of molecular and cellular cardiology. 2021;158:72–81. doi: 10.1016/j.yjmcc.2021.05.012

[29]

Yan J., Killingsworth C., Walcott G., et al. Molecular remodeling of Cx43, but not structural remodeling, promotes arrhythmias in an arrhythmogenic canine model of nonischemic heart failure // Journal of molecular and cellular cardiology. 2021. Vol. 158. P. 72–81. doi: 10.1016/j.yjmcc.2021.05.012

[30]

Yan J, Killingsworth C, Walcott G, et al. Molecular remodeling of Cx43, but not structural remodeling, promotes arrhythmias in an arrhythmogenic canine model of nonischemic heart failure. Journal of molecular and cellular cardiology. 2021;158:72–81. doi: 10.1016/j.yjmcc.2021.05.012

[31]

Bockeria LA, Borisov KV, Sinev AF. Original’nyj sposob hirurgicheskogo lecheniya gipertroficheskoj obstruktivnoj kardiomiopatii. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 1998;(1):4–10. (In Russ.). EDN: RWWCWT

[32]

Бокерия Л.А., Борисов К.В., Синев А.Ф. Оригинальный способ хирургического лечения гипертрофической обструктивной кардиомиопатии // Грудная и сердечно-сосудистая хирургия. 1998. № 1. С. 4–10. EDN: RWWCWT

[33]

Bockeria LA, Borisov KV, Sinev AF. Original’nyj sposob hirurgicheskogo lecheniya gipertroficheskoj obstruktivnoj kardiomiopatii. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 1998;(1):4–10. (In Russ.). EDN: RWWCWT

[34]

Darij OYu, Aleksandrova SA, Malenkov DA, et al. Magnetic resonance imaging in patients with hypertrophic cardiomyopathy associated with life-threatening arrhythmias. The Bulletin of Bakoulev Center Cardiovascular Diseases. 2019;20(9-10):771–782. doi: 10.24022/1810-0694-2019-20-9-10-771-782

[35]

Дарий О.Ю., Александрова С.А., Маленков Д.А., и др. Магнитно-резонансная томография у пациентов с гипертрофической кардиомиопатией, ассоциированной с жизнеугрожающими аритмиями // Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2019. Т. 20, № 9-10. С. 771–782. doi: 10.24022/1810-0694-2019-20-9-10-771-782

[36]

Darij OYu, Aleksandrova SA, Malenkov DA, et al. Magnetic resonance imaging in patients with hypertrophic cardiomyopathy associated with life-threatening arrhythmias. The Bulletin of Bakoulev Center Cardiovascular Diseases. 2019;20(9-10):771–782. doi: 10.24022/1810-0694-2019-20-9-10-771-782

[37]

Vetter C, Zweifel M, Zuppinger C, et al. Connexin 43 expression in human hypertrophied heart due to pressure and volume overload. Physiological Research. 2010;59(1):35–42. doi: 10.33549/physiolres.931654

[38]

Vetter C., Zweifel M., Zuppinger C., et al. Connexin 43 expression in human hypertrophied heart due to pressure and volume overload // Physiological Research. 2010. Vol. 59, N 1. P. 35–42. doi: 10.33549/physiolres.931654

[39]

Vetter C, Zweifel M, Zuppinger C, et al. Connexin 43 expression in human hypertrophied heart due to pressure and volume overload. Physiological Research. 2010;59(1):35–42. doi: 10.33549/physiolres.931654

[40]

Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. American Journal of Physiology. Heart and Circulatory Physiology. 2004;287(4):H1762–1770. doi: 10.1152/ajpheart.00346.2004

[41]

Poelzing S., Rosenbaum D.S. Altered connexin43 expression produces arrhythmia substrate in heart failure // American Journal of Physiology. Heart and Circulatory Physiology. 2004. Vol. 287, N 4. P. H1762–1770. doi: 10.1152/ajpheart.00346.2004

[42]

Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. American Journal of Physiology. Heart and Circulatory Physiology. 2004;287(4):H1762–1770. doi: 10.1152/ajpheart.00346.2004

[43]

Ripplinger CM, Li W, Hadley J, et al. Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation Research. 2007;101(10):1049–1057. doi: 10.1161/CIRCRESAHA.107.161240

[44]

Ripplinger C.M., Li W., Hadley J., et al. Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy // Circulation Research. 2007. Vol. 101, N 10. P. 1049–1057. doi: 10.1161/CIRCRESAHA.107.161240

[45]

Ripplinger CM, Li W, Hadley J, et al. Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation Research. 2007;101(10):1049–1057. doi: 10.1161/CIRCRESAHA.107.161240

Funding

Government of the Russian FederationПравительство Российской ФедерацииGovernment of the Russian Federation(123030700104-3)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1050KB)

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/