Sex differences in systemic inflammatory response in hypoxia-resistant Wistar rats

Anna M. Kosyreva , Julia Sh. Dzhalilova , Ivan S. Tsvetkov , Olga V. Makarova

Morphology ›› 2024, Vol. 162 ›› Issue (3) : 316 -328.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (3) : 316 -328. DOI: 10.17816/morph.634601
Original Study Articles
research-article

Sex differences in systemic inflammatory response in hypoxia-resistant Wistar rats

Author information +
History +
PDF

Abstract

BACKGROUND: Individual differences in hypoxia tolerance and hypoxia-inducible factor 1 alpha (HIF-1α) expression were identified in humans and laboratory animals. This was the basis for identifying groups of animals with low and high hypoxia tolerance. Animals with low hypoxia tolerance are known to have a more severe course of systemic inflammatory response (SIR). Sex differences in the severity of SIR in low hypoxia-tolerant animals have not been studied.

AIM: The aim was to evaluate sex differences in the severity of lipopolysaccharide (LPS)-induced SIR in Wistar rats with low hypoxia tolerance.

MATERIALS AND METHODS: Low hypoxia-tolerant animals were determined by their survival time in a hypobaric chamber under conditions equivalent to 11,500 m altitude (less than 60 s). The SIR was modeled by intraperitoneal administration of LPS at 1.5 mg/kg. Morphological changes in the lungs, liver, and thymus, as well as serum levels of endotoxin, corticosterone, HIF-1α, and TGF-β, were evaluated in males and females after 24 hours.

RESULTS: In control groups of low hypoxia tolerant rats, higher serum levels of HIF-1α, corticosterone and endotoxin were found in females compared to males. Compared to females, males usually have a higher thymic cortical volume fraction and lower subcapsular thickness. When LPS was administered to low hypoxia-tolerant females and males, sex differences in the severity of SIR were revealed. For example, in females, 24 hours after LPS administration, the neutrophil count in pulmonary interalveolar septa was higher, and random thymic involution with subcapsular zone narrowing developed without changing cortical volume fraction. Males demonstrated large abnormal lesions in the liver and more significant manifestations of accidental involution with a decrease in thymic cortical volume fraction. Serum corticosterone levels increased in females with SIR, and HIF-1α and endotoxin levels increased and TGF-β levels decreased in males.

CONCLUSION: LPS-induced SIR and immune responses in low hypoxia-tolerant Wistar rats depend on sex.

Keywords

hypoxia / sex differences / systemic inflammatory response / immune system / HIF-1α

Cite this article

Download citation ▾
Anna M. Kosyreva, Julia Sh. Dzhalilova, Ivan S. Tsvetkov, Olga V. Makarova. Sex differences in systemic inflammatory response in hypoxia-resistant Wistar rats. Morphology, 2024, 162(3): 316-328 DOI:10.17816/morph.634601

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Evans CE. Hypoxia and HIF activation as a possible link between sepsis and thrombosis. Thromb J. 2019;17:16. doi: 10.1186/s12959-019-0205-9

[2]

Evans C.E. Hypoxia and HIF activation as a possible link between sepsis and thrombosis // Thromb J. 2019. Vol. 17. ID 16. doi: 10.1186/s12959-019-0205-9

[3]

Evans CE. Hypoxia and HIF activation as a possible link between sepsis and thrombosis. Thromb J. 2019;17:16. doi: 10.1186/s12959-019-0205-9

[4]

Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–171. doi: 10.1016/s0955-0674(00)00194-0

[5]

Semenza G.L. HIF-1 and mechanisms of hypoxia sensing // Curr Opin Cell Biol. 2001. Vol. 13, N 2. P. 167–171. doi: 10.1016/s0955-0674(00)00194-0

[6]

Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–171. doi: 10.1016/s0955-0674(00)00194-0

[7]

Taylor CT, Scholz CC. The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 2022;18(9):573–587. doi: 10.1038/s41581-022-00587-8

[8]

Taylor C.T., Scholz C.C. The effect of HIF on metabolism and immunity // Nat Rev Nephrol. 2022. Vol. 18, N 9. P. 573–587. doi: 10.1038/s41581-022-00587-8

[9]

Taylor CT, Scholz CC. The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 2022;18(9):573–587. doi: 10.1038/s41581-022-00587-8

[10]

Kirova YI, Germanova EL, Lukyanova LD. Phenotypic features of HIF-1α content dynamics in rat neocortex under different hypoxia regimes. Bulletin of Experimental Biology and Medicine. 2012;154(12):681–686 EDN: PJUYCJ

[11]

Кирова Ю.И., Германова Э.Л., Лукьянова Л.Д. Фенотипические особенности динамики содержания HIF-1α в неокортексе крыс при различных режимах гипоксии // Бюллетень экспериментальной биологии и медицины. 2012. Т. 154, № 12. С. 681–686. EDN: PJUYCJ

[12]

Kirova YI, Germanova EL, Lukyanova LD. Phenotypic features of HIF-1α content dynamics in rat neocortex under different hypoxia regimes. Bulletin of Experimental Biology and Medicine. 2012;154(12):681–686 EDN: PJUYCJ

[13]

Dzhalilova DSh, Kosyreva AM, Diatroptov ME, et al. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. Journal of Inflammation Research. 2019;12:73–86. doi: 10.2147/JIR.S194581

[14]

Dzhalilova D.Sh., Kosyreva A.M., Diatroptov M.E., et al. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats // Journal of Inflammation Research. 2019. Vol. 12. P. 73–86. doi: 10.2147/JIR.S194581

[15]

Dzhalilova DSh, Kosyreva AM, Diatroptov ME, et al. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. Journal of Inflammation Research. 2019;12:73–86. doi: 10.2147/JIR.S194581

[16]

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–241. doi: 10.1002/wsbm.1331

[17]

Mitchell S., Vargas J., Hoffmann A. Signaling via the NFκB system // Wiley Interdiscip Rev Syst Biol Med. 2016. Vol. 8, N 3. P. 227–241. doi: 10.1002/wsbm.1331

[18]

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–241. doi: 10.1002/wsbm.1331

[19]

Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. Adv Exp Med Biol. 2019;1172:207–226. doi: 10.1007/978-981-13-9367-9_10

[20]

Mulero M.C., Huxford T., Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling // Adv Exp Med Biol. 2019. Vol. 1172. P. 207–226. doi: 10.1007/978-981-13-9367-9_10

[21]

Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. Adv Exp Med Biol. 2019;1172:207–226. doi: 10.1007/978-981-13-9367-9_10

[22]

Garcia 3rd AJ, Rotem-Kohavi N, Doi A, et al. Post-hypoxic recovery of respiratory rhythm generation is gender dependent. PLoS One. 2013;8:e60695. doi: 10.1371/journal.pone.0060695

[23]

Garcia 3rd A.J., Rotem–Kohavi N., Doi A., et al. Post- hypoxic recovery of respiratory rhythm generation is gender dependent // PLoS One. 2013. Vol. 8. ID: e60695. doi: 10.1371/journal.pone.0060695

[24]

Garcia 3rd AJ, Rotem-Kohavi N, Doi A, et al. Post-hypoxic recovery of respiratory rhythm generation is gender dependent. PLoS One. 2013;8:e60695. doi: 10.1371/journal.pone.0060695

[25]

Gargaglioni LH, Marques DA, Patrone LGA. Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol. 2019;238:110543. doi: 10.1016/j.cbpa.2019.110543

[26]

Gargaglioni L.H., Marques D.A., Patrone L.G.A. Sex differences in breathing // Comp Biochem Physiol A Mol Integr Physiol. 2019. Vol. 238. ID: 110543. doi: 10.1016/j.cbpa.2019.110543

[27]

Gargaglioni LH, Marques DA, Patrone LGA. Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol. 2019;238:110543. doi: 10.1016/j.cbpa.2019.110543

[28]

Avrushchenko MSh, Ostrova IV, Grechko AV. Gender peculiarities of postresuscitation in the expression of brain-derived neurotrophic factor (BDNF). General reanimatology. 2017;13(5):44–57. EDN: XMRPUL doi: 10.15360/1813-9779-2017-5-44-57

[29]

Аврущенко М.Ш., Острова И.В., Гречко А.В. Гендерные особенности постреанимационных изменений экспрессии мозгового нейротрофического фактора (BDNF) // Общая реаниматология. 2017. T. 13, № 5. С. 44–57. EDN: XMRPUL doi: 10.15360/1813-9779-2017-5-44-57

[30]

Avrushchenko MSh, Ostrova IV, Grechko AV. Gender peculiarities of postresuscitation in the expression of brain-derived neurotrophic factor (BDNF). General reanimatology. 2017;13(5):44–57. EDN: XMRPUL doi: 10.15360/1813-9779-2017-5-44-57

[31]

Kosyreva AM, Dzhalilova DSh, Makarova OV, Sladkopevtsev AS. Morpho-functional changes of thymus and contents of blood lymphocyte subpopulations in female Wistar rats with different resistance to hypoxia in systemic inflammatory response. Medical Immunology (Russia). 2019;21(4):643–652. EDN: YCRYSA doi: 10.15789/1563-0625-2019-4-643-652

[32]

Kosyreva A.M., Dzhalilova D.Sh., Makarova O.V., Sladkopevtsev A.S. Morpho-functional changes of thymus and contents of blood lymphocyte subpopulations in female Wistar rats with different resistance to hypoxia in systemic inflammatory response // Medical Immunology (Russia). 2019. Vol. 21, N 4. P. 643–652. EDN: YCRYSA doi: 10.15789/1563-0625-2019-4-643-652

[33]

Kosyreva AM, Dzhalilova DSh, Makarova OV, Sladkopevtsev AS. Morpho-functional changes of thymus and contents of blood lymphocyte subpopulations in female Wistar rats with different resistance to hypoxia in systemic inflammatory response. Medical Immunology (Russia). 2019;21(4):643–652. EDN: YCRYSA doi: 10.15789/1563-0625-2019-4-643-652

[34]

Dzhalilova DSh, Kosyreva AM, Tsvetkov IS, et al. Morphological and functional peculiarities of the immune system of male and female rats with different hypoxic resistance. Bulletin of Experimental Biology and Medicine. 2020;169(6):773–778. EDN: EOZIGJ

[35]

Джалилова Д.Ш., Косырёва А.М., Цветков И.С., и др. Морфофункциональные особенности иммунной системы самцов и самок крыс с разной устойчивостью к гипоксии // Бюллетень экспериментальной биологии и медицины. 2020. Т. 169, № 6. С. 773–778. EDN: EOZIGJ

[36]

Dzhalilova DSh, Kosyreva AM, Tsvetkov IS, et al. Morphological and functional peculiarities of the immune system of male and female rats with different hypoxic resistance. Bulletin of Experimental Biology and Medicine. 2020;169(6):773–778. EDN: EOZIGJ

[37]

Gao Y, Postovalova EA, Makarova OV, et al. Sex-related differences in the morphology and subpopulation composition of colon lymphocytes in experimental acute colitis. Bulletin of Experimental Biology and Medicine. 2018;165(4):503–507. EDN: XOOBVJ

[38]

Гао Ю., Постовалова Е.А., Макарова О.В., и др. Половые различия морфологических изменений и субпопуляционного состава лимфоцитов ободочной кишки при экспериментальном остром колите // Бюллетень экспериментальной биологии и медицины. 2018. Т. 165, № 4. С. 500–504. EDN: XOOBVJ

[39]

Gao Y, Postovalova EA, Makarova OV, et al. Sex-related differences in the morphology and subpopulation composition of colon lymphocytes in experimental acute colitis. Bulletin of Experimental Biology and Medicine. 2018;165(4):503–507. EDN: XOOBVJ

[40]

Kosyreva AM, Makarova OV, Mikhaylova LP, Kakturskiy LV. Sex and age differences of the systemic inflammatory response in experimental endotoxinemia. Immunologiya. 2019;40(3):28–40. EDN: XDBUKF doi: 10.24411/0206-4952-2019-13004

[41]

Косырева А.М., Макарова О.В., Михайлова Л.П., Кактурский Л.В. Половые и возрастные различия системной воспалительной реакции при экспериментальной эндотоксинемии // Иммунология. 2019. Т. 40, № 3. С. 28–40. EDN: XDBUKF doi: 10.24411/0206-4952-2019-13004

[42]

Kosyreva AM, Makarova OV, Mikhaylova LP, Kakturskiy LV. Sex and age differences of the systemic inflammatory response in experimental endotoxinemia. Immunologiya. 2019;40(3):28–40. EDN: XDBUKF doi: 10.24411/0206-4952-2019-13004

[43]

Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, et al. Sexual dimorphism in bacterial infections. Biol Sex Differ. 2018;9(1):27. doi: 10.1186/s13293-018-0187-5

[44]

Vázquez-Martínez E.R., García-Gómez E., Camacho-Arroyo I., et al. Sexual dimorphism in bacterial infections // Biol Sex Differ. 2018. Vol. 9, N 1. ID: 27. doi: 10.1186/s13293-018-0187-5

[45]

Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, et al. Sexual dimorphism in bacterial infections. Biol Sex Differ. 2018;9(1):27. doi: 10.1186/s13293-018-0187-5

[46]

Wang S, Chen X, Guo S, et al. CXCR4, regulated by HIF1A, promotes endometrial breakdown via CD45(+) leukocyte recruitment in a mouse model of menstruation. Reprod Biol. 2023;23(3):100785. doi: 10.1016/j.repbio.2023.100785

[47]

Wang S., Chen X., Guo S., et al. CXCR4, regulated by HIF1A, promotes endometrial breakdown via CD45(+) leukocyte recruitment in a mouse model of menstruation // Reprod Biol. 2023. Vol. 23, N 3. ID: 100785. doi: 10.1016/j.repbio.2023.100785

[48]

Wang S, Chen X, Guo S, et al. CXCR4, regulated by HIF1A, promotes endometrial breakdown via CD45(+) leukocyte recruitment in a mouse model of menstruation. Reprod Biol. 2023;23(3):100785. doi: 10.1016/j.repbio.2023.100785

[49]

Wegner A, Benson S, Rebernik L, et al. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans. Innate Immun. 2017;23(5):432–439. doi: 10.1177/1753425917707026

[50]

Wegner A., Benson S., Rebernik L., et al. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans // Innate Immun. 2017. Vol. 23, N 5. P. 432–439. doi: 10.1177/1753425917707026

[51]

Wegner A, Benson S, Rebernik L, et al. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans. Innate Immun. 2017;23(5):432–439. doi: 10.1177/1753425917707026

[52]

Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 2011;11:625–632. doi: 10.15789/1563-0625-2019-4-643-652

[53]

Irwin M.R., Cole S.W. Reciprocal regulation of the neural and innate immune systems // Nat Rev Immunol. 2011. Vol. 11. P. 625–632. doi: 10.15789/1563-0625-2019-4-643-652

[54]

Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 2011;11:625–632. doi: 10.15789/1563-0625-2019-4-643-652

[55]

Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. // Mol Cell Endocrinol 2011;335(1):2–13. doi: 10.1016/j.mce.2010.04.005

[56]

Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights // Mol Cell Endocrinol. 2011. Vol. 335, N 1. P. 2–13. doi: 10.1016/j.mce.2010.04.005

[57]

Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. // Mol Cell Endocrinol 2011;335(1):2–13. doi: 10.1016/j.mce.2010.04.005

[58]

Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16:723–740. doi: 10.1038/nri.2016.112

[59]

Chen W., Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily // Nat Rev Immunol. 2016. Vol. 16. P. 723–740. doi: 10.1038/nri.2016.112

[60]

Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16:723–740. doi: 10.1038/nri.2016.112

[61]

Gauthier T, Yao C, Dowdy T, et al. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal. 2023;16(797):eade0385. doi: 10.1126/scisignal.ade0385

[62]

Gauthier T., Yao C., Dowdy T., et al. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis // Sci Signal. 2023. Vol. 16, N 797. ID: eade0385. doi: 10.1126/scisignal.ade0385

[63]

Gauthier T, Yao C, Dowdy T, et al. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal. 2023;16(797):eade0385. doi: 10.1126/scisignal.ade0385

[64]

Scotland RS, Stables MJ, Madalli S, et al. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood. 2011;118(22):5918–5927. doi: 10.1182/blood-2011-03-340281

[65]

Scotland R.S., Stables M.J., Madalli S., et al. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice // Blood. 2011. Vol. 118, N 22. P. 5918–5927. doi: 10.1182/blood-2011-03-340281

[66]

Scotland RS, Stables MJ, Madalli S, et al. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood. 2011;118(22):5918–5927. doi: 10.1182/blood-2011-03-340281

[67]

Kosyreva AM, Makarova OV, Osmolovskaya EYu. Ageand sex-related differences in thymic morphological and functional changes in Wistar rats with systemic inflammatory responce syndrome. Clinical and Experimental Morphology. 2016;(1):18–26. EDN: ZFCARZ

[68]

Косырева А.М., Макарова О.В., Осмоловская Е.Ю. Возрастные особенности и половые различия морфофункциональных изменений тимуса у крыс Вистар при системном воспалительном ответе // Клиническая и экспериментальная морфология. 2016. № 1. С. 18–26. EDN: ZFCARZ

[69]

Kosyreva AM, Makarova OV, Osmolovskaya EYu. Ageand sex-related differences in thymic morphological and functional changes in Wistar rats with systemic inflammatory responce syndrome. Clinical and Experimental Morphology. 2016;(1):18–26. EDN: ZFCARZ

[70]

Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol. 2017;35:85–118. doi: 10.1146/annurev-immunol-051116-052320

[71]

Abramson J., Anderson G. Thymic epithelial cells // Annu Rev Immunol. 2017. Vol. 35. P. 85–118. doi: 10.1146/annurev-immunol-051116-052320

[72]

Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol. 2017;35:85–118. doi: 10.1146/annurev-immunol-051116-052320

Funding

Правительство Российской ФедерацииGovernment of the Russian FederationGovernment of the Russian Federation(122030200530-6)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/