Functional features of smooth muscle cells of the human aortic wall and their role in the pathogenesis of aneurysms
Ulyana S. Khovantseva , Diana G. Kiseleva , Vadim R. Cherednichenko , Denis P. Fotin , Anastasia I. Bogatyreva , Nadezhda V. Boyarskaya , Deyyara A. Chakal , Denis G. Breshenkov , Yuliya V. Markina , Anna B. Malashicheva , Eduard R. Charchyan , Alexander M. Markin
Morphology ›› 2024, Vol. 162 ›› Issue (2) : 174 -188.
Functional features of smooth muscle cells of the human aortic wall and their role in the pathogenesis of aneurysms
BACKGROUND: Thoracic aortic aneurysm is a chronic disease characterized by localized dilation of the vessel, including the ascending, arch and descending parts of the aorta. Aneurysm is one of the most dangerous diseases because aortic dissection or rupture can lead to sudden death. More than 150,000 people worldwide die from aortic aneurysms every year. Despite its prevalence, the cellular mechanisms of its development remain not fully understood.
AIM: To evaluate phagocytic activity and proinflammatory activation capability of smooth muscle cells isolated from tunica intima and tunica media of the thoracic part of the human aorta in patients with aneurysm.
MATERIALS AND METHODS: The experiments were performed on a culture of primary smooth muscle cells isolated from aneurysm patients. Linear cultures (mesenchymal stem cells ASC52telo, fibroblasts 977hTERT, THP-1, CLTH-CL05008 and EA.hy926) and smooth muscle cells isolated from healthy donors were used as controls. Phagocytic activity was assessed by introducing latex beads to the studied cells, while the ability to internalize low-density lipoprotein was evaluated using the dye BDP 630/650 (Lumiprobe, Russia) and a biochemical method. Pro- and anti-inflammatory activation capability were measured using enzyme-linked immunosorbent assay, quantifying the secretion of cytokines, namely IL-8, IL-6 and IL-10.
RESULTS: The study showed that the smooth cells have high phagocytic activity and the ability to internalize low-density lipoprotein. Thus, primary smooth muscle cells from tunica media have greater phagocytic activity than smooth muscle cells obtained from healthy donors (p <0.001). In addition, IL-6 secretion after incubation with latex beads was significantly higher in smooth muscle cells from tunica media compared to those from healthy donors (p <0.001). IL-6 secretion also increased after incubation with low-density lipoprotein in smooth muscle cells from tunica intima compared to cells from healthy donors (p <0.001).
CONCLUSION: The absorption of latex beads and low-density lipoprotein stimulates the secretion of proinflammatory IL-6 by primary smooth muscle cells from tunica intima and smooth muscle cells from tunica media, which are part of the aortic wall of patients with aneurysm.
aneurysm / aorta / smooth muscle cells
| [1] |
Sorysz D, Dweck M. Cardiac magnetic resonance or computed tomography: are we ready for a change of gold standard before transcatheter aortic valve replacement? Cardiovasc Res. 2024;120(7):e22–e25. doi: 10.1093/cvr/cvae069 |
| [2] |
Sorysz D., Dweck M. Cardiac magnetic resonance or computed tomography: are we ready for a change of gold standard before transcatheter aortic valve replacement? // Cardiovasc Res. 2024. Vol. 120, N 7. P. e22–e25. doi: 10.1093/cvr/cvae069 |
| [3] |
Sorysz D, Dweck M. Cardiac magnetic resonance or computed tomography: are we ready for a change of gold standard before transcatheter aortic valve replacement? Cardiovasc Res. 2024;120(7):e22–e25. doi: 10.1093/cvr/cvae069 |
| [4] |
Krafcik BM, Stone DH, Cai M, et al. Changes in global mortality from aortic aneurysm. J Vasc Surg. 2024;80(1):81–88.e1. doi: 10.1016/j.jvs.2024.02.025 |
| [5] |
Krafcik B.M., Stone D.H., Cai M., et al. Changes in global mortality from aortic aneurysm // J Vasc Surg. 2024. Vol. 80, N 1. P. 81–88. doi: 10.1016/j.jvs.2024.02.025 |
| [6] |
Krafcik BM, Stone DH, Cai M, et al. Changes in global mortality from aortic aneurysm. J Vasc Surg. 2024;80(1):81–88.e1. doi: 10.1016/j.jvs.2024.02.025 |
| [7] |
Riches K, Angelini T, et al. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm. J Transl Med. 2013;11:208. doi: 10.1186/1479-5876-11-208 |
| [8] |
Riches K., Angelini T.G., Mudhar G.S., et al. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm // J Transl Med. 2013. Vol. 11. P. 208. doi: 10.1186/1479-5876-11-208 |
| [9] |
Riches K, Angelini T, et al. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm. J Transl Med. 2013;11:208. doi: 10.1186/1479-5876-11-208 |
| [10] |
di Gioia CRT, Ascione A, Carletti R, Giordano C. Thoracic aorta: anatomy and pathology. Diagnostics (Basel). 2023;13(13):2166. doi: 10.3390/diagnostics13132166 |
| [11] |
di Gioia C.R.T., Ascione A., Carletti R., Giordano C. Thoracic aorta: anatomy and pathology // Diagnostics. 2023. Vol. 13, N 13. P. 2166. doi: 10.3390/diagnostics13132166 |
| [12] |
di Gioia CRT, Ascione A, Carletti R, Giordano C. Thoracic aorta: anatomy and pathology. Diagnostics (Basel). 2023;13(13):2166. doi: 10.3390/diagnostics13132166 |
| [13] |
Torsney E, Xu Q. Resident vascular progenitor cells. J Mol Cell Cardiol. 2011;50(2):304–311. doi: 10.1016/j.yjmcc.2010.09.006 |
| [14] |
Torsney E., Xu Q. Resident vascular progenitor cells // J Mol Cell Cardiol. 2011. Vol. 50, N 2. P. 304–311. doi: 10.1016/j.yjmcc.2010.09.006 |
| [15] |
Torsney E, Xu Q. Resident vascular progenitor cells. J Mol Cell Cardiol. 2011;50(2):304–311. doi: 10.1016/j.yjmcc.2010.09.006 |
| [16] |
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519–2530. doi: 10.1038/s12276-023-01130-w |
| [17] |
Cho M.J., Lee M.R., Park J.G. Aortic aneurysms: current pathogenesis and therapeutic targets // Exp Mol Med. 2023. Vol. 55, N 12. P. 2519–2530. doi: 10.1038/s12276-023-01130-w |
| [18] |
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519–2530. doi: 10.1038/s12276-023-01130-w |
| [19] |
Liang S, Zhang G, Ning R, et al. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol. 2020;17(1):61. doi: 10.1186/s12989-020-00391-x |
| [20] |
Liang S., Zhang G., Ning R., et al. The critical role of endothelial function in fine particulate matter-induced atherosclerosis // Part Fibre Toxicol. 2020. Vol. 17, N 1. P. 61. doi: 10.1186/s12989-020-00391-x |
| [21] |
Liang S, Zhang G, Ning R, et al. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol. 2020;17(1):61. doi: 10.1186/s12989-020-00391-x |
| [22] |
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front Pharmacol. 2020;10:1568. doi: 10.3389/fphar.2019.01568 |
| [23] |
Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide // Front Pharmacol. 2020. Vol. 10. P. 1568. doi: 10.3389/fphar.2019.01568 |
| [24] |
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front Pharmacol. 2020;10:1568. doi: 10.3389/fphar.2019.01568 |
| [25] |
Markin AM, Markina YuV, Bogatyreva AI, et al. The role of cytokines in cholesterol accumulation in cells and atherosclerosis progression. Int J Mol Sci. 2023;24(7):6426. doi: 10.3390/ijms24076426 |
| [26] |
Markin A.M., Markina Yu.V., Bogatyreva A.I., et al. The role of cytokines in cholesterol accumulation in cells and atherosclerosis progression // Int J Mol Sci. 2023. Vol. 24, N 7. P. 6426. doi: 10.3390/ijms24076426 |
| [27] |
Markin AM, Markina YuV, Bogatyreva AI, et al. The role of cytokines in cholesterol accumulation in cells and atherosclerosis progression. Int J Mol Sci. 2023;24(7):6426. doi: 10.3390/ijms24076426 |
| [28] |
Rombouts KB, van Merrienboer TAR, Ket JCF, et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2022;52(4):e13697. doi: 10.1111/eci.13697 |
| [29] |
Rombouts K.B., van Merrienboer T.A.R., Ket J.C.F., et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections // Eur J Clin Invest. 2022. Vol. 52, N 4. P. e13697. doi: 10.1111/eci.13697 |
| [30] |
Rombouts KB, van Merrienboer TAR, Ket JCF, et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest. 2022;52(4):e13697. doi: 10.1111/eci.13697 |
| [31] |
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166403. doi: 10.1016/j.bbadis.2022.166403 |
| [32] |
Riches-Suman K., Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing // Biochim Biophys Acta Mol Basis Dis. 2022. Vol. 1868, N 7. P. 166403. doi: 10.1016/j.bbadis.2022.166403 |
| [33] |
Riches-Suman K, Hussain A. Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis. 2022;1868(7):166403. doi: 10.1016/j.bbadis.2022.166403 |
| [34] |
Lu H, Du W, Ren L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J Am Heart Assoc. 2021;10(24):e023601. doi: 10.1161/JAHA.121.023601 |
| [35] |
12. Lu H., Du W., Ren L., et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms // J Am Heart Assoc. 2021. Vol. 10, N 24. P. e023601. doi: 10.1161/JAHA.121.023601 |
| [36] |
Lu H, Du W, Ren L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J Am Heart Assoc. 2021;10(24):e023601. doi: 10.1161/JAHA.121.023601 |
| [37] |
Alegret JM, Masana L, Martinez-Micaelo N, et al. LDL cholesterol and apolipoprotein B are associated with ascending aorta dilatation in bicuspid aortic valve patients. QJM. 2015;108(10):795–801. doi: 10.1093/qjmed/hcv032 |
| [38] |
Alegret J.M., Masana L., Martinez-Micaelo N., et al. LDL cholesterol and apolipoprotein B are associated with ascending aorta dilatation in bicuspid aortic valve patients // QJM. 2015. Vol. 108, N 10. P. 795–801. doi: 10.1093/qjmed/hcv032 |
| [39] |
Alegret JM, Masana L, Martinez-Micaelo N, et al. LDL cholesterol and apolipoprotein B are associated with ascending aorta dilatation in bicuspid aortic valve patients. QJM. 2015;108(10):795–801. doi: 10.1093/qjmed/hcv032 |
| [40] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (krüppel-like factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693–2707. doi: 10.1161/ATVBAHA.121.316600 |
| [41] |
Yap C., Mieremet A., de Vries C.J.M., et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (krüppel-like factor 4) // Arterioscler Thromb Vasc Biol. 2021. Vol. 41, N 11. P. 2693–2707. doi: 10.1161/ATVBAHA.121.316600 |
| [42] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (krüppel-like factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693–2707. doi: 10.1161/ATVBAHA.121.316600 |
| [43] |
Cao G, Xuan X, Li Y, et al. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm. Cell Commun Signal. 2023;21(1):113. doi: 10.1186/s12964-023-01120-5 |
| [44] |
Cao G., Xuan X., Li Y., et al. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm // Cell Commun Signal. 2023. Vol. 21, N 1. P. 113. doi: 10.1186/s12964-023-01120-5 |
| [45] |
Cao G, Xuan X, Li Y, et al. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm. Cell Commun Signal. 2023;21(1):113. doi: 10.1186/s12964-023-01120-5 |
| [46] |
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial fibroblasts in aortic aneurysm: unraveling pathogenic contributions to vascular disease. Diagnostics (Basel). 2022;12(4):871. doi: 10.3390/diagnostics12040871 |
| [47] |
Mackay C.D.A., Jadli A.S., Fedak P.W.M., Patel V.B. Adventitial fibroblasts in aortic aneurysm: unraveling pathogenic contributions to vascular disease // Diagnostics (Basel). 2022. Vol. 12, N 4. P. 871. doi: 10.3390/diagnostics12040871 |
| [48] |
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial fibroblasts in aortic aneurysm: unraveling pathogenic contributions to vascular disease. Diagnostics (Basel). 2022;12(4):871. doi: 10.3390/diagnostics12040871 |
| [49] |
Aplin AC, Nicosia RF. The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis. Angiogenesis. 2019;22(3):421–431. doi: 10.1007/s10456-019-09667-z |
| [50] |
Aplin A.C., Nicosia R.F. The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis // Angiogenesis. 2019. Vol. 22, N 3. P. 421–431. doi: 10.1007/s10456-019-09667-z |
| [51] |
Aplin AC, Nicosia RF. The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis. Angiogenesis. 2019;22(3):421–431. doi: 10.1007/s10456-019-09667-z |
| [52] |
Shen YH, LeMaire SC, Webb NR, et al. Aortic aneurysms and dissections series. Arterioscler Thromb Vasc Biol. 2020;40(3):e37–e46. doi: 10.1161/ATVBAHA.120.313991 |
| [53] |
Shen Y.H., LeMaire S.C., Webb N.R., et al. Aortic aneurysms and dissections series // Arterioscler Thromb Vasc Biol. 2020. Vol. 40, N 3. P. e37–e46. doi: 10.1161/ATVBAHA.120.313991 |
| [54] |
Shen YH, LeMaire SC, Webb NR, et al. Aortic aneurysms and dissections series. Arterioscler Thromb Vasc Biol. 2020;40(3):e37–e46. doi: 10.1161/ATVBAHA.120.313991 |
| [55] |
Wintruba KL, Hill JC, Richards TD, et al. Adventitia-derived extracellular matrix hydrogel enhances contractility of human vasa vasorum-derived pericytes via α2β1 integrin and TGFβ receptor. J Biomed Mater Res A. 2022;110(12):1912–1920. doi: 10.1002/jbm.a.37422 |
| [56] |
Wintruba K.L., Hill J.C., Richards T.D., et al. Adventitia-derived extracellular matrix hydrogel enhances contractility of human vasa vasorum-derived pericytes via α2β1 integrin and TGFβ receptor // J Biomed Mater Res A. 2022. Vol. 110, N 12. P. 1912–1920. doi: 10.1002/jbm.a.37422 |
| [57] |
Wintruba KL, Hill JC, Richards TD, et al. Adventitia-derived extracellular matrix hydrogel enhances contractility of human vasa vasorum-derived pericytes via α2β1 integrin and TGFβ receptor. J Biomed Mater Res A. 2022;110(12):1912–1920. doi: 10.1002/jbm.a.37422 |
| [58] |
Poursaleh A, Esfandiari G, Sadegh Beigee FS, et al. Isolation of intimal endothelial cells from the human thoracic aorta: Study protocol. Med J Islam Repub Iran. 2019;33:51. doi: 10.34171/mjiri.33.51 |
| [59] |
Poursaleh A., Esfandiari G., Sadegh Beigee F.S., et al. Isolation of intimal endothelial cells from the human thoracic aorta: Study protocol // Med J Islam Repub Iran. 2019. Vol. 33. P. 51. doi: 10.34171/mjiri.33.51 |
| [60] |
Poursaleh A, Esfandiari G, Sadegh Beigee FS, et al. Isolation of intimal endothelial cells from the human thoracic aorta: Study protocol. Med J Islam Repub Iran. 2019;33:51. doi: 10.34171/mjiri.33.51 |
| [61] |
Wang N, Gates KL, Trejo H, et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 2010;24(7):2178–2190. doi: 10.1096/fj.09-136895 |
| [62] |
Wang N., Gates K.L., Trejo H., et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage // FASEB J. 2010. Vol. 24, N 7. P. 2178–2190. doi: 10.1096/fj.09-136895 |
| [63] |
Wang N, Gates KL, Trejo H, et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J. 2010;24(7):2178–2190. doi: 10.1096/fj.09-136895 |
| [64] |
Tertov VV, Orekhov AN. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima. Exp Mol Pathol. 1997;64(3):127–145. doi: 10.1006/exmp.1997.2216 |
| [65] |
Tertov V.V., Orekhov A.N. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima // Exp Mol Pathol. 1997. Vol. 64, N 3. P. 127–145. doi: 10.1006/exmp.1997.2216 |
| [66] |
Tertov VV, Orekhov AN. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima. Exp Mol Pathol. 1997;64(3):127–145. doi: 10.1006/exmp.1997.2216 |
| [67] |
Li K, Wong DK, Luk FS, et al. Isolation of plasma lipoproteins as a source of extracellular RNA. Methods Mol Biol. 2018;1740:139–153. doi: 10.1007/978-1-4939-7652-2_11 |
| [68] |
Li K., Wong D.K., Luk F.S., et al. Isolation of plasma lipoproteins as a source of extracellular RNA // Methods Mol Biol. 2018. Vol. 1740. P. 139–153. doi: 10.1007/978-1-4939-7652-2_11 |
| [69] |
Li K, Wong DK, Luk FS, et al. Isolation of plasma lipoproteins as a source of extracellular RNA. Methods Mol Biol. 2018;1740:139–153. doi: 10.1007/978-1-4939-7652-2_11 |
| [70] |
Bort A, Sánchez BG, Mateos-Gómez PA, et al. Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation. Int J Mol Sci. 2019;20(7):1660. doi: 10.3390/ijms20071660 |
| [71] |
Bort A., Sánchez B.G., Mateos-Gómez P.A., et al. Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation // Int J Mol Sci. 2019. Vol. 20, N 7. P. 1660. doi: 10.3390/ijms20071660 |
| [72] |
Bort A, Sánchez BG, Mateos-Gómez PA, et al. Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation. Int J Mol Sci. 2019;20(7):1660. doi: 10.3390/ijms20071660 |
| [73] |
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. |
| [74] |
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues // J Biol Chem. 1957. Vol. 226, N 1. P. 497–509. |
| [75] |
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509. |
| [76] |
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. |
| [77] |
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // J Biol Chem. 1951. Vol. 193, N 1. P. 265–275. |
| [78] |
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. |
| [79] |
Xu H, Wang X, Wang W. Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite. Comp Biochem Physiol C Toxicol Pharmacol. 2018;214:36–42. doi: 10.1016/j.cbpc.2018.08.010 |
| [80] |
Xu H., Wang X., Wang W. Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite // Comp Biochem Physiol C Toxicol Pharmacol. 2018. Vol. 214. P. 36–42. doi: 10.1016/j.cbpc.2018.08.010 |
| [81] |
Xu H, Wang X, Wang W. Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite. Comp Biochem Physiol C Toxicol Pharmacol. 2018;214:36–42. doi: 10.1016/j.cbpc.2018.08.010 |
| [82] |
Crea F. The evolving management of adult congenital heart disease: focus on biomarkers and cardiac magnetic resonance. Eur Heart J. 2024;45(23):2025–2028. doi: 10.1093/eurheartj/ehae366 |
| [83] |
Crea F. The evolving management of adult congenital heart disease: focus on biomarkers and cardiac magnetic resonance // Eur Heart J. 2024. Vol. 45, N 23. P. 2025–2028. doi: 10.1093/eurheartj/ehae366 |
| [84] |
Crea F. The evolving management of adult congenital heart disease: focus on biomarkers and cardiac magnetic resonance. Eur Heart J. 2024;45(23):2025–2028. doi: 10.1093/eurheartj/ehae366 |
| [85] |
Aldana-Bitar J, Moore J, Budoff MJ. LDL receptor and pathogen processes: Functions beyond normal lipids. J Clin Lipidol. 2021;15(6):773–781. doi: 10.1016/j.jacl.2021.09.048 |
| [86] |
Aldana-Bitar J., Moore J., Budoff M.J. LDL receptor and pathogen processes: Functions beyond normal lipids // J Clin Lipidol. 2021. Vol. 15. N 6. P. 773–781. doi: 10.1016/j.jacl.2021.09.048 |
| [87] |
Aldana-Bitar J, Moore J, Budoff MJ. LDL receptor and pathogen processes: Functions beyond normal lipids. J Clin Lipidol. 2021;15(6):773–781. doi: 10.1016/j.jacl.2021.09.048 |
| [88] |
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274. doi: 10.1093/cvr/cvz338 |
| [89] |
Mineo C. Lipoprotein receptor signalling in atherosclerosis // Cardiovasc Res. 2020. Vol. 116, N 7. P. 1254–1274. doi: 10.1093/cvr/cvz338 |
| [90] |
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274. doi: 10.1093/cvr/cvz338 |
| [91] |
Kanters E, Pasparakis M, Gijbels MJJ, et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor–deficient mice. J Clin Invest. 2003;112(8)1176–1185. doi: 10.1172/JCI18580 |
| [92] |
Kanters E., Pasparakis M., Gijbels M.J.J., et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor–deficient mice // J Clin Invest. 2003. Vol. 112, N 8. P. 1176–1185. doi: 10.1172/JCI18580 |
| [93] |
Kanters E, Pasparakis M, Gijbels MJJ, et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor–deficient mice. J Clin Invest. 2003;112(8)1176–1185. doi: 10.1172/JCI18580 |
| [94] |
Jeon H, Blacklow SC. Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem. 2005;74:535–562. doi: 10.1146/annurev.biochem.74.082803.133354 |
| [95] |
Jeon H., Blacklow S.C. Structure and physiologic function of the low-density lipoprotein receptor // Annu Rev Biochem. 2005. Vol. 74. P. 535–562. doi: 10.1146/annurev.biochem.74.082803.133354 |
| [96] |
Jeon H, Blacklow SC. Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem. 2005;74:535–562. doi: 10.1146/annurev.biochem.74.082803.133354 |
| [97] |
Desjardins M, Griffiths G. Phagocytosis: Latex leads the way. Curr Opin Cell Biol. 2003;15(4):498–503. doi: 10.1016/s0955-0674(03)00083-8 |
| [98] |
Desjardins M., Griffiths G. Phagocytosis: Latex leads the way // Curr Opin Cell Biol. 2003. Vol. 15, N 4. P. 498–503. doi: 10.1016/s0955-0674(03)00083-8 |
| [99] |
Desjardins M, Griffiths G. Phagocytosis: Latex leads the way. Curr Opin Cell Biol. 2003;15(4):498–503. doi: 10.1016/s0955-0674(03)00083-8 |
| [100] |
Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–169. doi: 10.1042/BJ20031253 |
| [101] |
Rejman J., Oberle V., Zuhorn I.S., et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis // Biochem J. 2004. Vol. 377(Pt 1). P. 159–169. doi: 10.1042/BJ20031253 |
| [102] |
Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–169. doi: 10.1042/BJ20031253 |
| [103] |
Islam MM, Hlushchenko I, Pfisterer SG. Low-density lipoprotein internalization, degradation and receptor recycling along membrane contact sites. Front Cell Dev Biol. 2022;10:826379. doi: 10.3389/fcell.2022.826379 |
| [104] |
Islam M.M., Hlushchenko I., Pfisterer S.G. Low-density lipoprotein internalization, degradation and receptor recycling along membrane contact sites // Front Cell Dev Biol. 2022. Vol. 10. P. 826379. doi: 10.3389/fcell.2022.826379 |
| [105] |
Islam MM, Hlushchenko I, Pfisterer SG. Low-density lipoprotein internalization, degradation and receptor recycling along membrane contact sites. Front Cell Dev Biol. 2022;10:826379. doi: 10.3389/fcell.2022.826379 |
| [106] |
Nagao G, Ishii K, Hirota K, et al. Role of lipid rafts in innate immunity and phagocytosis of polystyrene latex microspheres. Colloids Surf B Biointerfaces. 2011;84(2):317–324. doi: 10.1016/j.colsurfb.2011.01.018 |
| [107] |
Nagao G., Ishii K., Hirota K., et al. Role of lipid rafts in innate immunity and phagocytosis of polystyrene latex microspheres // Colloids Surf B Biointerfaces. 2011. Vol. 84, N 2. P. 317–324. doi: 10.1016/j.colsurfb.2011.01.018 |
| [108] |
Nagao G, Ishii K, Hirota K, et al. Role of lipid rafts in innate immunity and phagocytosis of polystyrene latex microspheres. Colloids Surf B Biointerfaces. 2011;84(2):317–324. doi: 10.1016/j.colsurfb.2011.01.018 |
| [109] |
Puchenkova OA, Soldatov VO, Belykh AE, et al. Cytokines in abdominal aortic aneurysm: master regulators with clinical application. Biomark Insights. 2022;17:11772719221095676. doi: 10.1177/11772719221095676 |
| [110] |
Puchenkova O.A., Soldatov V.O., Belykh A.E., et al. Cytokines in abdominal aortic aneurysm: master regulators with clinical application // Biomark Insights. 2022. Vol. 17. P. 11772719221095676. doi: 10.1177/11772719221095676 |
| [111] |
Puchenkova OA, Soldatov VO, Belykh AE, et al. Cytokines in abdominal aortic aneurysm: master regulators with clinical application. Biomark Insights. 2022;17:11772719221095676. doi: 10.1177/11772719221095676 |
| [112] |
Battes LC, Cheng JM, Oemrawsingh RM, et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: Results from the ATHEROREMO-IVUS study. Atherosclerosis. 2014;236(1):18–24. doi: 10.1016/j.atherosclerosis.2014.06.010 |
| [113] |
Battes L.C., Cheng J.M., Oemrawsingh R.M., et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: Results from the ATHEROREMO-IVUS study // Atherosclerosis. 2014. Vol. 236, N 1. P. 18–24. doi: 10.1016/j.atherosclerosis.2014.06.010 |
| [114] |
Battes LC, Cheng JM, Oemrawsingh RM, et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: Results from the ATHEROREMO-IVUS study. Atherosclerosis. 2014;236(1):18–24. doi: 10.1016/j.atherosclerosis.2014.06.010 |
| [115] |
Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost. 2015;113(3):505–512. doi: 10.1160/TH14-06-0509 |
| [116] |
Han X., Boisvert W.A. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function // Thromb Haemost. 2015. Vol. 113, N 3. P. 505–512. doi: 10.1160/TH14-06-0509 |
| [117] |
Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost. 2015;113(3):505–512. doi: 10.1160/TH14-06-0509 |
Eco-Vector
/
| 〈 |
|
〉 |