Immune aging from the position of gynecological endocrinology: Starting point

Marina V. Averyanova , Polina A. Vishnyakova , Victoria V. Kiseleva , Valentiva V. Vtorushina , Lyubov V. Krechetova , Andrey V. Elchaninov , Timur Kh. Fatkhudinov , Svetlana V. Yureneva

Morphology ›› 2024, Vol. 162 ›› Issue (1) : 5 -15.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (1) : 5 -15. DOI: 10.17816/morph.633989
Original Study Articles
research-article

Immune aging from the position of gynecological endocrinology: Starting point

Author information +
History +
PDF

Abstract

BACKGROUND: Postmenopause is accompanied by several body changes, including those in the immune system. Studying the molecular pathways linking the decrease in the level of sex steroids in the postmenopausal period with immune aging is important to completely understand the pathophysiology of immune aging, which will allow for accurate identification of potential therapy targets for autoimmune, oncological, cardiovascular diseases and prevention of infectious diseases in women during the postmenopausal period.

AIM: To compare cellular immunity and cytokine profile parameters in women during perimenopause and early postmenopause.

MATERIALS AND METHODS: The single-center, cross-sectional study included 50 women aged 45–59 years of reproductive stage, perimenopause, and early postmenopause. The main subpopulations of blood cells, namely, cytotoxic T lymphocytes (CD3+CD8+), T helper cells (CD3+CD4+), NK cells (CD56+CD16+), B lymphocytes (CD3CD19+HLADR+), and classical (CD14++CD16), nonclassical (CD14CD16++), and intermediate (CD14+CD16++) monocytes and proinflammatory (CD86, CD80, CD40, and CX3CR1) and anti-inflammatory (CD163, CD206) markers on isolated monocyte populations were analyzed using flow cytometry (FACSCalibur; Becton Dickinson, USA). To detect blood plasma cytokines, a multiplex analysis method was used (Bio-Plex Human Cytokine Screening Panel; Bio-Rad Laboratories, USA).

RESULTS: In women, reproductive aging during the transition stage of reproductive aging from perimenopause to postmenopause is accompanied by increased monocyte-associated inflammatory reaction and humoral response, which is expressed in the redistribution of the monocyte population toward nonclassical monocytes (p=0.034) and increased level of B lymphocytes by 1.8 times (p=0.023) and significantly (p=0.022) increases levels of MCP-1, a marker associated with inflammation.

CONCLUSION: Immune system aging in both sexes is a natural process of ontogenesis, and in women, it correlates with the entry into the postmenopausal period. Hormonal background changes with the shutdown of ovarian function are naturally reflected in the composition of immune cells in the blood and the cytokine composition of its plasma.

Keywords

immune system / immunity / estrogens / menopause / aging

Cite this article

Download citation ▾
Marina V. Averyanova, Polina A. Vishnyakova, Victoria V. Kiseleva, Valentiva V. Vtorushina, Lyubov V. Krechetova, Andrey V. Elchaninov, Timur Kh. Fatkhudinov, Svetlana V. Yureneva. Immune aging from the position of gynecological endocrinology: Starting point. Morphology, 2024, 162(1): 5-15 DOI:10.17816/morph.633989

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039

[2]

López-Otín C., Blasco M.A., Partridge L., et al. The hallmarks of aging // Cell. 2013. Vol. 153, N 6. P. 1194–217. doi: 10.1016/j.cell.2013.05.039

[3]

López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039

[4]

Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;(463):21–26. doi: 10.1016/j.jim.2018.08.005

[5]

Sadighi Akha A.A. Aging and the immune system: An overview // J Immunol Methods. 2018. N 463. P. 21–26. doi: 10.1016/j.jim.2018.08.005

[6]

Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;(463):21–26. doi: 10.1016/j.jim.2018.08.005

[7]

Kim OY, Chae JS, Paik JK, et al. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age (Dordr). 2012;34(2):415–425. EDN: DYUSZH doi: 10.1007/s11357-011-9244-2

[8]

Kim O.Y., Chae J.S., Paik J.K., et al. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women // Age (Dordr). 2012. Vol. 34, N 2. P. 415–425. EDN: DYUSZH doi: 10.1007/s11357-011-9244-2

[9]

Kim OY, Chae JS, Paik JK, et al. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age (Dordr). 2012;34(2):415–425. EDN: DYUSZH doi: 10.1007/s11357-011-9244-2

[10]

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. doi: 10.1097/MCO.0b013e32835ada13

[11]

Cevenini E., Monti D., Franceschi C. Inflamm-ageing // Curr Opin Clin Nutr Metab Care. 2013. Vol. 16, N 1. P. 14–20. doi: 10.1097/MCO.0b013e32835ada13

[12]

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. doi: 10.1097/MCO.0b013e32835ada13

[13]

Vrachnis N, Zygouris D, Iliodromiti Z, et al. Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence. Maturitas. 2014;78(3):174–178. doi: 10.1016/j.maturitas.2014.04.014

[14]

Vrachnis N., Zygouris D., Iliodromiti Z., et al. Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence // Maturitas. 2014. Vol. 78, N 3. P. 174–178. doi: 10.1016/j.maturitas.2014.04.014

[15]

Vrachnis N, Zygouris D, Iliodromiti Z, et al. Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence. Maturitas. 2014;78(3):174–178. doi: 10.1016/j.maturitas.2014.04.014

[16]

Greene JG. Constructing a standard climacteric scale. Maturitas. 1998;29(1):25–31. doi: 10.1016/s0378-5122(98)00025-5

[17]

Greene J.G. Constructing a standard climacteric scale // Maturitas. 1998. Vol. 29, N 1. P. 25–31. doi: 10.1016/s0378-5122(98)00025-5

[18]

Greene JG. Constructing a standard climacteric scale. Maturitas. 1998;29(1):25–31. doi: 10.1016/s0378-5122(98)00025-5

[19]

Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev. 2024;25(6):e13724. EDN: TWDHYD doi: 10.1111/obr.13724

[20]

Xu S., Lu F., Gao J., Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue // Obes Rev. 2024. Vol. 25, N 6. P. e13724. EDN: TWDHYD doi: 10.1111/obr.13724

[21]

Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev. 2024;25(6):e13724. EDN: TWDHYD doi: 10.1111/obr.13724

[22]

Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol. 2021;(143):111162. doi: 10.1016/j.exger.2020.111162

[23]

Zamboni M., Nori N., Brunelli A., Zoico E. How does adipose tissue contribute to inflammageing? // Exp Gerontol. 2021. N 143. P. 111162. doi: 10.1016/j.exger.2020.111162

[24]

Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol. 2021;(143):111162. doi: 10.1016/j.exger.2020.111162

[25]

Singh A, Mayengbam SS, Yaduvanshi H, et al. Obesity programs macrophages to support cancer progression. Cancer Res. 2022;82(23):4303–4312. EDN: BMGNGA doi: 10.1158/0008-5472.CAN-22-1257

[26]

Singh A., Mayengbam S.S., Yaduvanshi H., et al. Obesity programs macrophages to support cancer progression // Cancer Res. 2022. Vol. 82, N 23. P. 4303–4312. EDN: BMGNGA doi: 10.1158/0008-5472.CAN-22-1257

[27]

Singh A, Mayengbam SS, Yaduvanshi H, et al. Obesity programs macrophages to support cancer progression. Cancer Res. 2022;82(23):4303–4312. EDN: BMGNGA doi: 10.1158/0008-5472.CAN-22-1257

[28]

Pinke KH, Calzavara B, Faria PF, et al. Proinflammatory profile of in vitro monocytes in the ageing is affected by lymphocytes presence. Immun Ageing. 2013;10(1):22. EDN: MLAMZL doi: 10.1186/1742-4933-10-22

[29]

10. Pinke K.H., Calzavara B., Faria P.F., et al. Proinflammatory profile of in vitro monocytes in the ageing is affected by lymphocytes presence // Immun Ageing. 2013. Vol. 10, N 1. P. 22. EDN: MLAMZL doi: 10.1186/1742-4933-10-22

[30]

Pinke KH, Calzavara B, Faria PF, et al. Proinflammatory profile of in vitro monocytes in the ageing is affected by lymphocytes presence. Immun Ageing. 2013;10(1):22. EDN: MLAMZL doi: 10.1186/1742-4933-10-22

[31]

Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. EDN: MNHHFG doi: 10.1016/j.intimp.2021.107598

[32]

Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease // Int Immunopharmacol. 2021. Vol. 101, Pt B.P. 107598. EDN: MNHHFG doi: 10.1016/j.intimp.2021.107598

[33]

Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. EDN: MNHHFG doi: 10.1016/j.intimp.2021.107598

[34]

Gerszten RE, Garcia-Zepeda EA, Lim YC, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999;398(6729):718–723. doi: 10.1038/19546

[35]

Gerszten R.E., Garcia-Zepeda E.A., Lim Y.C., et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions // Nature. 1999. Vol. 398, N 6729. P. 718–723. doi: 10.1038/19546

[36]

Gerszten RE, Garcia-Zepeda EA, Lim YC, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999;398(6729):718–723. doi: 10.1038/19546

[37]

Pervin S, Singh R, Rosenfeld ME, et al. Estradiol suppresses MCP-1 expression in vivo: Implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 1998;18(10):1575–1582. doi: 10.1161/01.atv.18.10.1575

[38]

Pervin S., Singh R., Rosenfeld M.E., et al. Estradiol suppresses MCP-1 expression in vivo: Implications for atherosclerosis // Arterioscler Thromb Vasc Biol. 1998. Vol. 18, N 10. P. 1575–1582. doi: 10.1161/01.atv.18.10.1575

[39]

Pervin S, Singh R, Rosenfeld ME, et al. Estradiol suppresses MCP-1 expression in vivo: Implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 1998;18(10):1575–1582. doi: 10.1161/01.atv.18.10.1575

[40]

Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-(kappa)B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem. 2005;280(16):16163–16169. doi: 10.1074/jbc.M412713200

[41]

Kim M.S., Day C.J., Morrison N.A. MCP-1 is induced by receptor activator of nuclear factor-(kappa)B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation // J Biol Chem. 2005. Vol. 280, N 16. P. 16163–16169. doi: 10.1074/jbc.M412713200

[42]

Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-(kappa)B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem. 2005;280(16):16163–16169. doi: 10.1074/jbc.M412713200

[43]

Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009;44(1):87–101. doi: 10.1016/j.bone.2008.08.120

[44]

Hopwood B., Tsykin A., Findlay D.M., Fazzalari N.L. Gene expression profile of the bone microenvironment in human fragility fracture bone // Bone. 2009. Vol. 44, N 1. P. 87–101. doi: 10.1016/j.bone.2008.08.120

[45]

Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009;44(1):87–101. doi: 10.1016/j.bone.2008.08.120

[46]

Tani A, Yasui T, Matsui S, et al. Different circulating levels of monocyte chemoattractant protein-1 and interleukin-8 during the menopausal transition. Cytokine. 2013;62(1):86–90. doi: 10.1016/j.cyto.2013.02.011

[47]

Tani A., Yasui T., Matsui S., et al. Different circulating levels of monocyte chemoattractant protein-1 and interleukin-8 during the menopausal transition // Cytokine. 2013. Vol. 62, N 1. P. 86–90. doi: 10.1016/j.cyto.2013.02.011

[48]

Tani A, Yasui T, Matsui S, et al. Different circulating levels of monocyte chemoattractant protein-1 and interleukin-8 during the menopausal transition. Cytokine. 2013;62(1):86–90. doi: 10.1016/j.cyto.2013.02.011

[49]

Tacke F, Ginhoux F, Jakubzick C, et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006;203(3):583–597. doi: 10.1084/jem.20052119

[50]

Tacke F., Ginhoux F., Jakubzick C., et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery // J Exp Med. 2006. Vol. 203, N 3. P. 583–597. doi: 10.1084/jem.20052119

[51]

Tacke F, Ginhoux F, Jakubzick C, et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006;203(3):583–597. doi: 10.1084/jem.20052119

[52]

Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204(1):171–180. doi: 10.1084/jem.20061011

[53]

Varol C., Landsman L., Fogg D.K., et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells // J Exp Med. 2007. Vol. 204, N 1. P. 171–180. doi: 10.1084/jem.20061011

[54]

Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204(1):171–180. doi: 10.1084/jem.20061011

[55]

Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol. 2006;176(7):4155–4162. doi: 10.4049/jimmunol.176.7.4155

[56]

Yrlid U., Jenkins C.D., MacPherson G.G. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions // J Immunol. 2006. Vol. 176, N 7. P. 4155–4162. doi: 10.4049/jimmunol.176.7.4155

[57]

Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol. 2006;176(7):4155–4162. doi: 10.4049/jimmunol.176.7.4155

[58]

Sugimoto C, Hasegawa A, Saito Y, et al. Differentiation kinetics of blood monocytes and dendritic cells in macaques: Insights to understanding human myeloid cell development. J Immunol. 2015;195(4):1774–1781. doi: 10.4049/jimmunol.1500522

[59]

Sugimoto C., Hasegawa A., Saito Y., et al. Differentiation kinetics of blood monocytes and dendritic cells in macaques: Insights to understanding human myeloid cell development // J Immunol. 2015. Vol. 195, N 4. P. 1774–1781. doi: 10.4049/jimmunol.1500522

[60]

Sugimoto C, Hasegawa A, Saito Y, et al. Differentiation kinetics of blood monocytes and dendritic cells in macaques: Insights to understanding human myeloid cell development. J Immunol. 2015;195(4):1774–1781. doi: 10.4049/jimmunol.1500522

[61]

Patel AA, Zhang Y, Fullerton JN, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–1923. doi: 10.1084/jem.20170355

[62]

Patel A.A., Zhang Y., Fullerton J.N., et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation // J Exp Med. 2017. Vol. 214, N 7. P. 1913–1923. doi: 10.1084/jem.20170355

[63]

Patel AA, Zhang Y, Fullerton JN, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–1923. doi: 10.1084/jem.20170355

[64]

Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013;153(2):362–375. doi: 10.1016/j.cell.2013.03.010

[65]

Carlin L.M., Stamatiades E.G., Auffray C., et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal // Cell. 2013. Vol. 153, N 2. P. 362–375. doi: 10.1016/j.cell.2013.03.010

[66]

Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 2013;153(2):362–375. doi: 10.1016/j.cell.2013.03.010

[67]

Hearps AC, Martin GE, Angelovich TA, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–875. doi: 10.1111/j.1474-9726.2012.00851.x

[68]

Hearps A.C., Martin G.E., Angelovich T.A., et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function // Aging Cell. 2012. Vol. 11, N 5. P. 867–875. doi: 10.1111/j.1474-9726.2012.00851.x

[69]

Hearps AC, Martin GE, Angelovich TA, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–875. doi: 10.1111/j.1474-9726.2012.00851.x

[70]

Ghosh M, Rodriguez-Garcia M, Wira CR. The immune system in menopause: Pros and cons of hormone therapy. J Steroid Biochem Mol Biol. 2014;(142):171–175. doi: 10.1016/j.jsbmb.2013.09.003

[71]

Ghosh M., Rodriguez-Garcia M., Wira C.R. The immune system in menopause: Pros and cons of hormone therapy // J Steroid Biochem Mol Biol. 2014. N 142. P. 171–175. doi: 10.1016/j.jsbmb.2013.09.003

[72]

Ghosh M, Rodriguez-Garcia M, Wira CR. The immune system in menopause: Pros and cons of hormone therapy. J Steroid Biochem Mol Biol. 2014;(142):171–175. doi: 10.1016/j.jsbmb.2013.09.003

Funding

Российский научный фондRussian Science FoundationRussian Science Foundation(24-25-00203)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/