Effect of splenectomy on the course of reparative processes in the liver

Aiaz T. oglu Mamedov , Daria A. Artemova , Valeria V. Glinkina , Andrey V. Elchaninov

Morphology ›› 2024, Vol. 162 ›› Issue (2) : 213 -223.

PDF (718KB)
Morphology ›› 2024, Vol. 162 ›› Issue (2) : 213 -223. DOI: 10.17816/morph.633796
Reviews
review-article

Effect of splenectomy on the course of reparative processes in the liver

Author information +
History +
PDF (718KB)

Abstract

In mammals, the liver and spleen are closely related to each other and form the so-called liver-spleen axis. The functioning of this axis is based on anatomical connection through portal circulation, as well as the commonality of many functions performed. The connection between the liver and spleen is most pronounced in the development of such pathologic conditions as fibrosis and cirrhosis. Some clinical and experimental studies found that removal of the spleen leads to a decrease in the severity of liver fibrosis. A positive effect of spleen removal has also been found in liver resection and liver transplantation. Different authors suggest several mechanisms of this effect. It is assumed that the spleen in the development of fibrosis becomes an additional source of cytokines damaging the liver. In addition, monocytes and other leukocytes that support inflammation may migrate from the spleen to the liver. Another mechanism may be a decrease in blood pressure levels in the hepatic portal vein after splenectomy. Despite the available evidence, the mechanisms of this effect remain poorly understood. This issue is relevant for biomedical research, as it may form the basis for the development of new ways to treat liver diseases and stimulate its regeneration.

Keywords

liver / regeneration / repair / spleen / splenectomy / hepatic-splenic axis

Cite this article

Download citation ▾
Aiaz T. oglu Mamedov, Daria A. Artemova, Valeria V. Glinkina, Andrey V. Elchaninov. Effect of splenectomy on the course of reparative processes in the liver. Morphology, 2024, 162(2): 213-223 DOI:10.17816/morph.633796

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarantino G, Scalera A, Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol. 2013;19(23):3534–3542. doi: 10.3748/wjg.v19.i23.3534

[2]

Tarantino G., Scalera A., Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism // World J Gastroenterol. 2013. Vol. 19, N 23. P. 3534–3542. doi: 10.3748/wjg.v19.i23.3534

[3]

Tarantino G, Scalera A, Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol. 2013;19(23):3534–3542. doi: 10.3748/wjg.v19.i23.3534

[4]

Nugroho A. Splenectomy in liver cirrhosis with splenomegaly and hypersplenism. In: Gayam V, Engin O, editors. Liver pathology. InthechOpen; 2020. doi: 10.5772/INTECHOPEN.94337

[5]

Nugroho A. Splenectomy in liver cirrhosis with splenomegaly and hypersplenism. In: Gayam V, Engin O, editors. Liver pathology. InthechOpen, 2020. doi: 10.5772/INTECHOPEN.94337

[6]

Nugroho A. Splenectomy in liver cirrhosis with splenomegaly and hypersplenism. In: Gayam V, Engin O, editors. Liver pathology. InthechOpen; 2020. doi: 10.5772/INTECHOPEN.94337

[7]

Tarantino G, Citro V, Balsano C. Liver-spleen axis in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2021;15(7):759–769. doi: 10.1080/17474124.2021.1914587

[8]

Tarantino G., Citro V., Balsano C. Liver-spleen axis in nonalcoholic fatty liver disease // Expert Rev Gastroenterol Hepatol. 2021. Vol. 15, N 7. P. 759–769. doi: 10.1080/17474124.2021.1914587

[9]

Tarantino G, Citro V, Balsano C. Liver-spleen axis in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2021;15(7):759–769. doi: 10.1080/17474124.2021.1914587

[10]

Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–465. doi: 10.1080/01926230600867743

[11]

Cesta M.F. Normal structure, function, and histology of the spleen // Toxicol Pathol. 2006. Vol. 34, N 5. P. 455–465. doi: 10.1080/01926230600867743

[12]

Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–465. doi: 10.1080/01926230600867743

[13]

Babaeva AG, Zotikov EA. Immunology of processes of adaptive growth, proliferation and their disorders. 1987.

[14]

Babaeva A.G., Zotikov E.A. Immunology of processes of adaptive growth, proliferation and their disorders. 1987.

[15]

Babaeva AG, Zotikov EA. Immunology of processes of adaptive growth, proliferation and their disorders. 1987.

[16]

Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, et al. Molecular mechanisms of splenectomy-induced hepatocyte proliferation. PLoS One. 2020;15(6): e0233767. doi: 10.1371/journal.pone.0233767

[17]

Elchaninov A.V., Fatkhudinov T.K., Vishnyakova P.A., et al. Molecular mechanisms of splenectomy-induced hepatocyte proliferation // PLoS One. 2020. Vol. 15, N 6. P. e0233767. doi: 10.1371/journal.pone.0233767

[18]

Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, et al. Molecular mechanisms of splenectomy-induced hepatocyte proliferation. PLoS One. 2020;15(6): e0233767. doi: 10.1371/journal.pone.0233767

[19]

Li N, Hua J. Immune cells in liver regeneration. Oncotarget. 2017;8(2):3628–3639. doi: 10.18632/oncotarget.12275

[20]

Li N., Hua J. Immune cells in liver regeneration // Oncotarget. 2017. Vol. 8, N 2. P. 3628–3639. doi: 10.18632/oncotarget.12275

[21]

Li N, Hua J. Immune cells in liver regeneration. Oncotarget. 2017;8(2):3628–3639. doi: 10.18632/oncotarget.12275

[22]

Delaby C, Pilard N, Puy H, Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J. 2008;411(1):123–131. doi: 10.1042/BJ20071474

[23]

Delaby C., Pilard N., Puy H., Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression // Biochem J. 2008. Vol. 411, N 1. P. 123–131. doi: 10.1042/BJ20071474

[24]

Delaby C, Pilard N, Puy H, Canonne-Hergaux F. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J. 2008;411(1):123–131. doi: 10.1042/BJ20071474

[25]

Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55. doi: 10.1038/s41575-020-0342-4

[26]

Michalopoulos G.K., Bhushan B. Liver regeneration: biological and pathological mechanisms and implications // Nat Rev Gastroenterol Hepatol. 2021. Vol. 18, N 1. P. 40–55. doi: 10.1038/s41575-020-0342-4

[27]

Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55. doi: 10.1038/s41575-020-0342-4

[28]

Romanelli RG, Stasi C. Recent advancements in diagnosis and therapy of liver cirrhosis. Curr Drug Targets. 2016;17(15):1804–1817. doi: 10.2174/1389450117666160613101413

[29]

Romanelli R.G., Stasi C. Recent advancements in diagnosis and therapy of liver cirrhosis // Curr Drug Targets. 2016. Vol. 17, N 15. P. 1804–1817. doi: 10.2174/1389450117666160613101413

[30]

Romanelli RG, Stasi C. Recent advancements in diagnosis and therapy of liver cirrhosis. Curr Drug Targets. 2016;17(15):1804–1817. doi: 10.2174/1389450117666160613101413

[31]

Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42. doi: 10.1016/j.addr.2017.05.007

[32]

Higashi T., Friedman S.L., Hoshida Y. Hepatic stellate cells as key target in liver fibrosis // Adv Drug Deliv Rev. 2017. Vol. 121. P. 27–42. doi: 10.1016/j.addr.2017.05.007

[33]

Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42. doi: 10.1016/j.addr.2017.05.007

[34]

Asanoma M, Ikemoto T, Mori H, et al. Cytokine expression in spleen affects progression of liver cirrhosis through liver-spleen cross-talk. Hepatol Res. 2014;44(12):1217–1223. doi: 10.1111/hepr.12267

[35]

Asanoma M., Ikemoto T., Mori H., et al. Cytokine expression in spleen affects progression of liver cirrhosis through liver-spleen cross-talk // Hepatol Res. 2014. Vol. 44, N 12. P. 1217–1223. doi: 10.1111/hepr.12267

[36]

Asanoma M, Ikemoto T, Mori H, et al. Cytokine expression in spleen affects progression of liver cirrhosis through liver-spleen cross-talk. Hepatol Res. 2014;44(12):1217–1223. doi: 10.1111/hepr.12267

[37]

Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF superfamily member 14). Pharmacol Res. 2016;104:151–155. doi: 10.1016/j.phrs.2015.12.018

[38]

Herro R., Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF superfamily member 14) // Pharmacol Res. 2016. Vol. 104. P. 151–155. doi: 10.1016/j.phrs.2015.12.018

[39]

Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF superfamily member 14). Pharmacol Res. 2016;104:151–155. doi: 10.1016/j.phrs.2015.12.018

[40]

Liang QS, Xie JG, Yu C, et al. Splenectomy improves liver fibrosis via tumor necrosis factor superfamily 14 (LIGHT) through the JNK/TGF-β1 signaling pathway. Exp Mol Med. 2021;53(3):393–406. doi: 10.1038/s12276-021-00574-2

[41]

Liang Q.S., Xie J.G., Yu C., et al. Splenectomy improves liver fibrosis via tumor necrosis factor superfamily 14 (LIGHT) through the JNK/TGF-β1 signaling pathway // Exp Mol Med. 2021. Vol. 53, N 3. P. 393–406. doi: 10.1038/s12276-021-00574-2

[42]

Liang QS, Xie JG, Yu C, et al. Splenectomy improves liver fibrosis via tumor necrosis factor superfamily 14 (LIGHT) through the JNK/TGF-β1 signaling pathway. Exp Mol Med. 2021;53(3):393–406. doi: 10.1038/s12276-021-00574-2

[43]

Tanabe K, Taura K, Koyama Y, et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice. J Gastroenterol. 2015;50(10):1054–1068. doi: 10.1007/s00535-015-1054-3

[44]

Tanabe K., Taura K., Koyama Y., et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice // J Gastroenterol. 2015. Vol. 50, N 10. P. 1054–1068. doi: 10.1007/s00535-015-1054-3

[45]

Tanabe K, Taura K, Koyama Y, et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice. J Gastroenterol. 2015;50(10):1054–1068. doi: 10.1007/s00535-015-1054-3

[46]

Jiang H, Meng F, Li W, et al. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery. 2007;141(1):32–40. doi: 10.1016/j.surg.2006.03.024

[47]

Jiang H., Meng F., Li W., et al. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats // Surgery. 2007. Vol. 141, N 1. P. 32–40. doi: 10.1016/j.surg.2006.03.024

[48]

Jiang H, Meng F, Li W, et al. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery. 2007;141(1):32–40. doi: 10.1016/j.surg.2006.03.024

[49]

Nomura Y, Kage M, Ogata T, et al. Influence of splenectomy in patients with liver cirrhosis and hypersplenism. Hepatol Res. 2014;44(10): E100–E109. doi: 10.1111/hepr.12234

[50]

Nomura Y., Kage M., Ogata T., et al. Influence of splenectomy in patients with liver cirrhosis and hypersplenism // Hepatol Res. 2014. Vol. 44, N 10. P. E100–E109. doi: 10.1111/hepr.12234

[51]

Nomura Y, Kage M, Ogata T, et al. Influence of splenectomy in patients with liver cirrhosis and hypersplenism. Hepatol Res. 2014;44(10): E100–E109. doi: 10.1111/hepr.12234

[52]

Romano A, Hou X, Sertorio M, et al. FOXP3+ regulatory t cells in hepatic fibrosis and splenomegaly caused by schistosoma japonicum: the spleen may be a major source of tregs in subjects with splenomegaly. PLoS Negl Trop Dis. 2016;10(2):e0004454. doi: 10.1371/journal.pntd.0004454

[53]

Romano A., Hou X., Sertorio M., et al. FOXP3+ regulatory t cells in hepatic fibrosis and spleno-megaly caused by schistosoma japonicum: the spleen may be a major source of tregs in subjects with splenomegaly // PLoS Negl Trop Dis. 2016. Vol. 10, N 2. P. e0004306. doi: 10.1371/journal.pntd.0004454

[54]

Romano A, Hou X, Sertorio M, et al. FOXP3+ regulatory t cells in hepatic fibrosis and splenomegaly caused by schistosoma japonicum: the spleen may be a major source of tregs in subjects with splenomegaly. PLoS Negl Trop Dis. 2016;10(2):e0004454. doi: 10.1371/journal.pntd.0004454

[55]

Burke ML, McManus DP, Ramm GA, et al. Co-ordinated gene expression in the liver and spleen during schistosoma japonicum infection regulates cell migration. PLoS Negl Trop Dis. 2010;4(5): e686. doi: 10.1371/journal.pntd.0000686

[56]

Burke M.L., McManus D.P., Ramm G.A., et al. Co-ordinated gene expression in the liver and spleen during Schistosoma japonicum infection regulates cell migration // PLoS Negl Trop Dis. 2010. Vol. 4, N 5. P. e686. doi: 10.1371/journal.pntd.0000686

[57]

Burke ML, McManus DP, Ramm GA, et al. Co-ordinated gene expression in the liver and spleen during schistosoma japonicum infection regulates cell migration. PLoS Negl Trop Dis. 2010;4(5): e686. doi: 10.1371/journal.pntd.0000686

[58]

Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17(5):306–321. doi: 10.1038/nri.2017.11

[59]

Krenkel O., Tacke F. Liver macrophages in tissue homeostasis and disease // Nat Rev Immunol. 2017. Vol. 17, N 5. P. 306–321. doi: 10.1038/nri.2017.11

[60]

Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17(5):306–321. doi: 10.1038/nri.2017.11

[61]

Li L, Wei W, Li Z, et al. The spleen promotes the secretion of ccl2 and supports an m1 dominant phenotype in hepatic macrophages during liver fibrosis. Cell Physiol Biochem. 2018;51(2):557–574. doi: 10.1159/000495276

[62]

Li L., Wei W., Li Z., et al. The spleen promotes the secretion of ccl2 and supports an m1 dominant phenotype in hepatic macrophages during liver fibrosis // Cell Physiol Biochem. 2018. Vol. 51, N 2. P. 557–574. doi: 10.33594/000000112 Corrected and republished from: Cell Physiol Biochem. 2019. Vol. 52, N 6. P. 1586–1587. doi: 10.1159/000495276

[63]

Li L, Wei W, Li Z, et al. The spleen promotes the secretion of ccl2 and supports an m1 dominant phenotype in hepatic macrophages during liver fibrosis. Cell Physiol Biochem. 2018;51(2):557–574. doi: 10.1159/000495276

[64]

Zhang S, Wan D, Zhu M, et al. CD11b+CD43hiLy6Clo splenocyte-derived macrophages exacerbate liver fibrosis via spleen–liver axis. Hepatology. 2023;77(5):1612–1629. doi: 10.1002/hep.32782

[65]

Zhang S., Wan D., Zhu M., et al. CD11b + CD43 hi Ly6C lo splenocyte-derived macrophages exacerbate liver fibrosis via spleen-liver axis // Hepatology. 2023. Vol. 77, N 5. P. 1612–1629. doi: 10.1002/hep.32782

[66]

Zhang S, Wan D, Zhu M, et al. CD11b+CD43hiLy6Clo splenocyte-derived macrophages exacerbate liver fibrosis via spleen–liver axis. Hepatology. 2023;77(5):1612–1629. doi: 10.1002/hep.32782

[67]

Wang Y, Guo X, Jiao G, et al. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis. Biomed Res Int. 2019;2019:5756189. doi: 10.1155/2019/5756189

[68]

Wang Y., Guo X., Jiao G., et al. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis // Biomed Res Int. 2019. Vol. 2019. P. 5756189. doi: 10.1155/2019/5756189

[69]

Wang Y, Guo X, Jiao G, et al. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis. Biomed Res Int. 2019;2019:5756189. doi: 10.1155/2019/5756189

[70]

Yada A, Iimuro Y, Uyama N, et al. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages. J Hepatol. 2015;63(4):905–916. doi: 10.1016/j.jhep.2015.05.010

[71]

Yada A., Iimuro Y., Uyama N., et al. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages // J Hepatol. 2015. Vol. 63, N 4. P. 905–916. doi: 10.1016/j.jhep.2015.05.010

[72]

Yada A, Iimuro Y, Uyama N, et al. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages. J Hepatol. 2015;63(4):905–916. doi: 10.1016/j.jhep.2015.05.010

[73]

Iwamoto T, Terai S, Mizunaga Y, et al. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol. 2012;47(3):300–312. doi: 10.1007/s00535-011-0486-7

[74]

Iwamoto T., Terai S., Mizunaga Y., et al. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients // J Gastroenterol. 2012. Vol. 47, N 3. P. 300–312. doi: 10.1007/s00535-011-0486-7

[75]

Iwamoto T, Terai S, Mizunaga Y, et al. Splenectomy enhances the anti-fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol. 2012;47(3):300–312. doi: 10.1007/s00535-011-0486-7

[76]

Tang WP, Akahoshi T, Piao JS, et al. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats. Liver Int. 2016;36(8):1151–1159. doi: 10.1111/liv.12962

[77]

Tang W.P., Akahoshi T., Piao J.S., et al. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats // Liver Int. 2016. Vol. 36, N 8. P. 1151–1159. doi: 10.1111/liv.12962

[78]

Tang WP, Akahoshi T, Piao JS, et al. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats. Liver Int. 2016;36(8):1151–1159. doi: 10.1111/liv.12962

[79]

Ito K, Ozasa H, Horikawa S. Effects of prior splenectomy on remnant liver after partial hepatectomy with Pringle maneuver in rats. Liver Int. 2005;25(2):438–444. doi: 10.1111/j.1478-3231.2005.01102.x

[80]

Ito K., Ozasa H., Horikawa S. Effects of prior splenectomy on remnant liver after partial hepatectomy with Pringle maneuver in rats // Liver Int. 2005. Vol. 25, N 2. P. 438–444. doi: 10.1111/j.1478-3231.2005.01102.x

[81]

Ito K, Ozasa H, Horikawa S. Effects of prior splenectomy on remnant liver after partial hepatectomy with Pringle maneuver in rats. Liver Int. 2005;25(2):438–444. doi: 10.1111/j.1478-3231.2005.01102.x

[82]

Arakawa Y, Shimada M, Utsunomya T, et al. Effects of splenectomy on hepatic gene expression profiles after massive hepatectomy in rats. J Gastroenterol Hepatol. 2013;28(10):1669–1677. doi: 10.1111/jgh.12316

[83]

Arakawa Y., Shimada M., Utsunomya T., et al. Effects of splenectomy on hepatic gene expression profiles after massive hepatectomy in rats // J Gastroenterol Hepatol. 2013. Vol. 28, N 10. P. 1669–1677. doi: 10.1111/jgh.12316

[84]

Arakawa Y, Shimada M, Utsunomya T, et al. Effects of splenectomy on hepatic gene expression profiles after massive hepatectomy in rats. J Gastroenterol Hepatol. 2013;28(10):1669–1677. doi: 10.1111/jgh.12316

[85]

Kim J, Kim CJ, Ko IG, et al. Splenectomy affects the balance between hepatic growth factor and transforming growth factor-β and its effect on liver regeneration is dependent on the amount of liver resection in rats. J Korean Surg Soc. 2012;82(4):238–245. doi: 10.4174/jkss.2012.82.4.238

[86]

Kim J., Kim C.J., Ko I.G., et al. Splenectomy affects the balance between hepatic growth factor and transforming growth factor-β and its effect on liver regeneration is dependent on the amount of liver resection in rats // J Korean Surg Soc. 2012. Vol. 82, N 4. P. 238–245. doi: 10.4174/jkss.2012.82.4.238

[87]

Kim J, Kim CJ, Ko IG, et al. Splenectomy affects the balance between hepatic growth factor and transforming growth factor-β and its effect on liver regeneration is dependent on the amount of liver resection in rats. J Korean Surg Soc. 2012;82(4):238–245. doi: 10.4174/jkss.2012.82.4.238

[88]

Ueda S, Yamanoi A, Hishikawa Y, et al. Transforming growth factor-beta1 released from the spleen exerts a growth inhibitory effect on liver regeneration in rats. Lab Invest. 2003;83(11):1595–1603. doi: 10.1097/01.lab.0000095686.10639.c8

[89]

Ueda S., Yamanoi A., Hishikawa Y., et al. Transforming growth factor-beta1 released from the spleen exerts a growth inhibitory effect on liver regeneration in rats // Lab Invest. 2003. Vol. 83, N 11. P. 1595–1603. doi: 10.1097/01.lab.0000095686.10639.c8

[90]

Ueda S, Yamanoi A, Hishikawa Y, et al. Transforming growth factor-beta1 released from the spleen exerts a growth inhibitory effect on liver regeneration in rats. Lab Invest. 2003;83(11):1595–1603. doi: 10.1097/01.lab.0000095686.10639.c8

[91]

Morinaga A, Ogata T, Kage M, et al. Comparison of liver regeneration after a splenectomy and splenic artery ligation in a dimethylnitrosamine-induced cirrhotic rat model. HPB (Oxford). 2010;12(1):22–30. doi: 10.1111/j.1477-2574.2009.00116.x

[92]

Morinaga A., Ogata T., Kage M., et al. Comparison of liver regeneration after a splenectomy and splenic artery ligation in a dimethylnitrosamine-induced cirrhotic rat model // HPB (Oxford). 2010. Vol. 12, N 1. P. 22–30. doi: 10.1111/j.1477-2574.2009.00116.x

[93]

Morinaga A, Ogata T, Kage M, et al. Comparison of liver regeneration after a splenectomy and splenic artery ligation in a dimethylnitrosamine-induced cirrhotic rat model. HPB (Oxford). 2010;12(1):22–30. doi: 10.1111/j.1477-2574.2009.00116.x

[94]

Lee SC, Jeong HJ, Choi BJ, Kim SJ. Role of the spleen in liver regeneration in relation to transforming growth factor-β1 and hepatocyte growth factor. J Surg Res. 2015;196(2):270–277. doi: 10.1016/j.jss.2015.02.025

[95]

Lee S.C., Jeong H.J., Choi B.J., Kim S.J. Role of the spleen in liver regeneration in relation to transforming growth factor-β1 and hepatocyte growth factor // J Surg Res. 2015. Vol. 196, N 2. P. 270–277. doi: 10.1016/j.jss.2015.02.025

[96]

Lee SC, Jeong HJ, Choi BJ, Kim SJ. Role of the spleen in liver regeneration in relation to transforming growth factor-β1 and hepatocyte growth factor. J Surg Res. 2015;196(2):270–277. doi: 10.1016/j.jss.2015.02.025

[97]

Yin S, Wang H, Park O, et al. Enhanced liver regeneration in IL-10-deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3. Am J Pathol. 2011;178(4):1614–1621. doi: 10.1016/j.ajpath.2011.01.001

[98]

Yin S., Wang H., Park O., et al. Enhanced liver regeneration in IL-10-deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3 // Am J Pathol. 2011. Vol. 178, N 4. P. 1614–1621. doi: 10.1016/j.ajpath.2011.01.001

[99]

Yin S, Wang H, Park O, et al. Enhanced liver regeneration in IL-10-deficient mice after partial hepatectomy via stimulating inflammatory response and activating hepatocyte STAT3. Am J Pathol. 2011;178(4):1614–1621. doi: 10.1016/j.ajpath.2011.01.001

[100]

Shimizu H, Miyazaki M, Yoshioka S, et al. Changes in hepatic venous oxygen saturation related to the extent of regeneration after partial hepatectomy in rats. Am J Surg. 1999;178(5):428–431. doi: 10.1016/s0002-9610(99)00206-8

[101]

Shimizu H., Miyazaki M., Yoshioka S., et al. Changes in hepatic venous oxygen saturation related to the extent of regeneration after partial hepatectomy in rats // Am J Surg. 1999. Vol. 178, N 5. P. 428–431. doi: 10.1016/s0002-9610(99)00206-8

[102]

Shimizu H, Miyazaki M, Yoshioka S, et al. Changes in hepatic venous oxygen saturation related to the extent of regeneration after partial hepatectomy in rats. Am J Surg. 1999;178(5):428–431. doi: 10.1016/s0002-9610(99)00206-8

[103]

Yoshioka S, Miyazaki M, Shimizu H, et al. Hepatic venous hemoglobin oxygen saturation predicts regenerative status of remnant liver after partial hepatectomy in rats. Hepatology. 1998;27(5):1349–1353. doi: 10.1002/hep.510270522

[104]

Yoshioka S., Miyazaki M., Shimizu H., et al. Hepatic venous hemoglobin oxygen saturation predicts regenerative status of remnant liver after partial hepatectomy in rats // Hepatology. 1998. Vol. 27, N 5. P. 1349–1353. doi: 10.1002/hep.510270522

[105]

Yoshioka S, Miyazaki M, Shimizu H, et al. Hepatic venous hemoglobin oxygen saturation predicts regenerative status of remnant liver after partial hepatectomy in rats. Hepatology. 1998;27(5):1349–1353. doi: 10.1002/hep.510270522

[106]

Ren YS, Qian NS, Tang Y, et al. Beneficial effects of splenectomy on liver regeneration in a rat model of massive hepatectomy. Hepatobiliary Pancreat Dis Int. 2012;11(1):60–65. doi: 10.1016/s1499-3872(11)60126-4

[107]

Ren Y.S., Qian N.S., Tang Y., et al. Beneficial effects of splenectomy on liver regeneration in a rat model of massive hepatectomy // Hepatobiliary Pancreat Dis Int. 2012. Vol. 11, N 1. P. 60–65. doi: 10.1016/s1499-3872(11)60126-4

[108]

Ren YS, Qian NS, Tang Y, et al. Beneficial effects of splenectomy on liver regeneration in a rat model of massive hepatectomy. Hepatobiliary Pancreat Dis Int. 2012;11(1):60–65. doi: 10.1016/s1499-3872(11)60126-4

[109]

Ozawa K. Hepatic function and liver resection. J Gastroenterol Hepatol. 1990;5(3):296–309. doi: 10.1111/j.1440-1746.1990.tb01632.x

[110]

Ozawa K. Hepatic function and liver resection // J Gastroenterol Hepatol. 1990. Vol. 5, N 3. P. 296–309. doi: 10.1111/j.1440-1746.1990.tb01632.x

[111]

Ozawa K. Hepatic function and liver resection. J Gastroenterol Hepatol. 1990;5(3):296–309. doi: 10.1111/j.1440-1746.1990.tb01632.x

[112]

Satoh S, Tanaka A, Hatano E, et al. Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy. Gastroenterology. 1996;110(4):1166–1174. doi: 10.1053/gast.1996.v110.pm8613006

[113]

Satoh S., Tanaka A., Hatano E., et al. Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy // Gastroenterology. 1996. Vol. 110, N 4. P. 1166–1174. doi: 10.1053/gast.1996.v110.pm8613006

[114]

Satoh S, Tanaka A, Hatano E, et al. Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy. Gastroenterology. 1996;110(4):1166–1174. doi: 10.1053/gast.1996.v110.pm8613006

[115]

Eipel C, Abshagen K, Ritter J, et al. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int. 2010;23(10):998–1007. doi: 10.1111/j.1432-2277.2010.01079.x

[116]

Eipel C., Abshagen K., Ritter J., et al. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver // Transpl Int. 2010. Vol. 23, N 10. P. 998–1007. doi: 10.1111/j.1432-2277.2010.01079.x

[117]

Eipel C, Abshagen K, Ritter J, et al. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int. 2010;23(10):998–1007. doi: 10.1111/j.1432-2277.2010.01079.x

[118]

Liu G, Xie C, Fang Y, et al. Splenectomy after partial hepatectomy accelerates liver regeneration in mice by promoting tight junction formation via polarity protein Par 3-aPKC. Life Sci. 2018;192:91–98. doi: 10.1016/j.lfs.2017.11.032

[119]

Liu G., Xie C., Fang Y., et al. Splenectomy after partial hepatectomy accelerates liver regeneration in mice by promoting tight junction formation via polarity protein Par 3-aPKC // Life Sci. 2018. Vol. 192. P. 91–98. doi: 10.1016/j.lfs.2017.11.032

[120]

Liu G, Xie C, Fang Y, et al. Splenectomy after partial hepatectomy accelerates liver regeneration in mice by promoting tight junction formation via polarity protein Par 3-aPKC. Life Sci. 2018;192:91–98. doi: 10.1016/j.lfs.2017.11.032

[121]

Elchaninov AV, Vishnyakova PA, Kuznetsova MV, et al. The spleen as a possible source of serine protease inhibitors and migrating monocytes required for liver regeneration after 70% resection in mice. Front Cell Dev Biol. 2023;11:1241819. EDN: CGRWTO doi: 10.3389/fcell.2023.1241819

[122]

Elchaninov A.V., Vishnyakova P.A., Kuznetsova M.V., et al. The spleen as a possible source of serine protease inhibitors and migrating monocytes required for liver regeneration after 70% resection in mice // Frontiers in Cell and Developmental Biology. 2023. Vol. 11. P. 1241819. EDN: CGRWTO doi: 10.3389/fcell.2023.1241819

[123]

Elchaninov AV, Vishnyakova PA, Kuznetsova MV, et al. The spleen as a possible source of serine protease inhibitors and migrating monocytes required for liver regeneration after 70% resection in mice. Front Cell Dev Biol. 2023;11:1241819. EDN: CGRWTO doi: 10.3389/fcell.2023.1241819

[124]

Tran M, Mostofa G, Picard M, et al. SerpinA3N deficiency attenuates steatosis and enhances insulin signaling in male mice. J Endocrinol. 2023;256(3): e220073. doi: 10.1530/JOE-22-0073

[125]

Tran M., Mostofa G., Picard M., et al. SerpinA3N deficiency attenuates steatosis and enhances insulin signaling in male mice // J Endocrinol. 2023. Vol. 256, N 3. P. e220073. doi: 10.1530/JOE-22-0073

[126]

Tran M, Mostofa G, Picard M, et al. SerpinA3N deficiency attenuates steatosis and enhances insulin signaling in male mice. J Endocrinol. 2023;256(3): e220073. doi: 10.1530/JOE-22-0073

[127]

Zhang Y, Chen Q, Chen D, et al. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci Ther. 2022;28(4):566–579. doi: 10.1111/cns.13776

[128]

Zhang Y., Chen Q., Chen D., et al. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation // CNS Neurosci Ther. 2022. Vol. 28, N 4. P. 566–579. doi: 10.1111/cns.13776

[129]

Zhang Y, Chen Q, Chen D, et al. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci Ther. 2022;28(4):566–579. doi: 10.1111/cns.13776

[130]

Takahashi Y, Matsuura T, Yanagi Y, et al. The role of splenectomy before liver transplantation in biliary atresia patients. J Pediatr Surg. 2016;51(12):2095–2098. doi: 10.1016/j.jpedsurg.2016.09.048

[131]

Takahashi Y., Matsuura T., Yanagi Y., et al. The role of splenectomy before liver transplantation in biliary atresia patients // J Pediatr Surg. 2016. Vol. 51, N 12. P. 2095–2098. doi: 10.1016/j.jpedsurg.2016.09.048

[132]

Takahashi Y, Matsuura T, Yanagi Y, et al. The role of splenectomy before liver transplantation in biliary atresia patients. J Pediatr Surg. 2016;51(12):2095–2098. doi: 10.1016/j.jpedsurg.2016.09.048

[133]

Yoshizumi T, Itoh S, Shimokawa M, et al. Simultaneous splenectomy improves outcomes after adult living donor liver transplantation. J Hepatol. 2021;74(2):372–379. doi: 10.1016/j.jhep.2020.08.017

[134]

Yoshizumi T., Itoh S., Shimokawa M., et al. Simultaneous splenectomy improves outcomes after adult living donor liver transplantation // J Hepatol. 2021. Vol. 74, N 2. P. 372–379. doi: 10.1016/j.jhep.2020.08.017

[135]

Yoshizumi T, Itoh S, Shimokawa M, et al. Simultaneous splenectomy improves outcomes after adult living donor liver transplantation. J Hepatol. 2021;74(2):372–379. doi: 10.1016/j.jhep.2020.08.017

[136]

Kuriyama N, Iizawa Y, Kato H, et al. Impact of splenectomy just before partial orthotopic liver transplantation using small-for-size graft in rats. Transplant Proc. 2016;48(4):1304–1308. doi: 10.1016/j.transproceed.2016.02.041 Corrected and republished from: Transplant Proc. 2017;49(4):916. doi: 10.1016/j.transproceed.2017.03.015

[137]

Kuriyama N., Iizawa Y., Kato H., et al. Impact of splenectomy just before partial orthotopic liver transplantation using small-for-size graft in rats // Transplant Proc. 2016. Vol. 48, N 4. P. 1304–1308. doi: 10.1016/j.transproceed.2017.03.015 Corrected and republished from: Transplant Proc. 2017. Vol. 49, N 4. P. 916. doi: 10.1016/j.transproceed.2016.02.041

[138]

Kuriyama N, Iizawa Y, Kato H, et al. Impact of splenectomy just before partial orthotopic liver transplantation using small-for-size graft in rats. Transplant Proc. 2016;48(4):1304–1308. doi: 10.1016/j.transproceed.2016.02.041 Corrected and republished from: Transplant Proc. 2017;49(4):916. doi: 10.1016/j.transproceed.2017.03.015

[139]

Kuriyama N, Isaji S, Kishiwada M, et al. Dual cytoprotective effects of splenectomy for small-for-size liver transplantation in rats. Liver Transpl. 2012;18(11):1361–1370. doi: 10.1002/lt.23519

[140]

Kuriyama N., Isaji S., Kishiwada M., et al. Dual cytoprotective effects of splenectomy for small-for-size liver transplantation in rats // Liver Transpl. 2012. Vol. 18, N 11. P. 1361–1370. doi: 10.1002/lt.23519

[141]

Kuriyama N, Isaji S, Kishiwada M, et al. Dual cytoprotective effects of splenectomy for small-for-size liver transplantation in rats. Liver Transpl. 2012;18(11):1361–1370. doi: 10.1002/lt.23519

[142]

Yoichi T, Takayashiki T, Shimizu H, et al. Protective effects of simultaneous splenectomy on small-for-size liver graft injury in rat liver transplantation. Transpl Int. 2014;27(1):106–113. doi: 10.1111/tri.12223

[143]

Yoichi T., Takayashiki T., Shimizu H., et al. Protective effects of simultaneous splenectomy on small-for-size liver graft injury in rat liver transplantation // Transpl Int. 2014. Vol. 27, N 1. P. 106–113. doi: 10.1111/tri.12223

[144]

Yoichi T, Takayashiki T, Shimizu H, et al. Protective effects of simultaneous splenectomy on small-for-size liver graft injury in rat liver transplantation. Transpl Int. 2014;27(1):106–113. doi: 10.1111/tri.12223

[145]

Matsuura T, Hayashida M, Saeki I, Taguchi T. The risk factors of persistent thrombocytopenia and splenomegaly after liver transplantation. Pediatr Surg Int. 2010;26(10):1007–1010. doi: 10.1007/s00383-010-2660-z

[146]

Matsuura T., Hayashida M., Saeki I., Taguchi T. The risk factors of persistent thrombocytopenia and splenomegaly after liver transplantation // Pediatr Surg Int. 2010. Vol. 26, N 10. P. 1007–1010. doi: 10.1007/s00383-010-2660-z

[147]

Matsuura T, Hayashida M, Saeki I, Taguchi T. The risk factors of persistent thrombocytopenia and splenomegaly after liver transplantation. Pediatr Surg Int. 2010;26(10):1007–1010. doi: 10.1007/s00383-010-2660-z

[148]

Liu Y, Li Y, Ma J, et al. A modified Hassab’s operation for portal hypertension: Experience with 562 cases. J Surg Res. 2013;185(1):463–468. doi: 10.1016/j.jss.2013.05.046

[149]

Liu Y., Li Y., Ma J., et al. A modified Hassab’s operation for portal hypertension: experience with 562 cases // J Surg Res. 2013. Vol. 185, N 1. P. 463–468. doi: 10.1016/j.jss.2013.05.046

[150]

Liu Y, Li Y, Ma J, et al. A modified Hassab’s operation for portal hypertension: Experience with 562 cases. J Surg Res. 2013;185(1):463–468. doi: 10.1016/j.jss.2013.05.046

[151]

Yagi S, Iida T, Hori T, et al. Optimal portal venous circulation for liver graft function after living-donor liver transplantation. Transplantation. 2006;81(3):373–378. doi: 10.1097/01.tp.0000198122.15235.a7

[152]

Yagi S., Iida T., Hori T., et al. Optimal portal venous circulation for liver graft function after living-donor liver transplantation // Transplantation. 2006. Vol. 81, N 3. P. 373–378. doi: 10.1097/01.tp.0000198122.15235.a7

[153]

Yagi S, Iida T, Hori T, et al. Optimal portal venous circulation for liver graft function after living-donor liver transplantation. Transplantation. 2006;81(3):373–378. doi: 10.1097/01.tp.0000198122.15235.a7

[154]

Athanasiou A, Papalois A, Kontos M, et al. The beneficial role of simultaneous splenectomy after extended hepatectomy: experimental study in pigs. J Surg Res. 2017;208:121–131. doi: 10.1016/j.jss.2016.09.002

[155]

Athanasiou A., Papalois A., Kontos M., et al. The beneficial role of simultaneous splenectomy after extended hepatectomy: experimental study in pigs // J Surg Res. 2017. Vol. 208. P. 121–131. doi: 10.1016/j.jss.2016.09.002

[156]

Athanasiou A, Papalois A, Kontos M, et al. The beneficial role of simultaneous splenectomy after extended hepatectomy: experimental study in pigs. J Surg Res. 2017;208:121–131. doi: 10.1016/j.jss.2016.09.002

Funding

Российский научный фонд, (грант)Russian Science Foundation (grant)Russian Science Foundation (grant)(24-25-00138)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (718KB)

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/