Seasonal changes in absolute and relative organ weight in 3-month male Wistar rats

David A. Areshidze , Marina V. Kondashevskaya , Maria A. Kozlova , Anna I. Anurkina , Kirill A. Kasabov

Morphology ›› 2024, Vol. 162 ›› Issue (3) : 266 -275.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (3) : 266 -275. DOI: 10.17816/morph.633001
Original Study Articles
research-article

Seasonal changes in absolute and relative organ weight in 3-month male Wistar rats

Author information +
History +
PDF

Abstract

BACKGROUND: To correctly interpret preclinical studies and basic research, it is necessary to accurately assess the biometric parameters of normal status and their limits. Biometric parameters of animals of genetically pure lines are known to vary according to factors such as sex and age, but little attention is paid to a seasonal factor. Therefore, it seems relevant for physiology and pathophysiology to develop reference values of normal status and their limits for working with genetically pure animals during certain periods of ontogenesis and different seasons.

AIM: The aim of the study was to determine the absolute body and organ weights and the relative organ weights of adult male Wistar rats at three months of age during different seasons of the year.

MATERIALS AND METHODS: The experiment involved 160 male Wistar rats. The animals were divided into four groups so that the rats reached the age of three months in one of the seasons: spring, summer, fall, or winter. In each group, absolute and relative body and organ weights were measured for the brain, spleen, thymus, liver, kidneys, adrenal glands, heart, lungs, and testes.

RESULTS: The most significant seasonal differences were found in the absolute weights of all organs, while the relative weight coefficients of the organs differed in only 50% of the cases. Synchronous seasonal differences in kidney and adrenal gland weights were observed. The heart was found to have the most significant seasonal variability in both weight parameters studied.

CONCLUSIONS: The absolute organ weight is one of the most sensitive parameters in determining reference values, but changes in the relative weight coefficient should also be considered. This study established reference ranges for the weight of major organs in a population of healthy, genetically homogeneous Wistar rats at three months of age and showed seasonal variations in these reference ranges. Further research is needed to understand changes in organ weights combined with pathological data.

Keywords

reference ranges / Wistar rats / absolute organ weight / relative organ weight / seasonal variability

Cite this article

Download citation ▾
David A. Areshidze, Marina V. Kondashevskaya, Maria A. Kozlova, Anna I. Anurkina, Kirill A. Kasabov. Seasonal changes in absolute and relative organ weight in 3-month male Wistar rats. Morphology, 2024, 162(3): 266-275 DOI:10.17816/morph.633001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mironov AN, editor. Guidelines for conducting preclinical drug research. (Part 1.) Moscow: Grif I K; 2012. (In Russ.) EDN: SDEWMP

[2]

Руководство по проведению доклинических исследований лекарственных средств / под ред. Миронова А.Н. Москва: Гриф и К, 2012. Часть 1. EDN: SDEWMP

[3]

Mironov AN, editor. Guidelines for conducting preclinical drug research. (Part 1.) Moscow: Grif I K; 2012. (In Russ.) EDN: SDEWMP

[4]

Makarov V.G., Makarova M.N. Abrashova T.V., i dr. Fiziologicheskiye, biokhimicheskiye i biometricheskiye pokazateli normy eksperimental’nykh zhivotnykh. Sankt-Peterburg: LEMA, 2013

[5]

Макаров В.Г., Макарова М.Н. Абрашова Т.В., и др. Физиологические, биохимические и биометрические показатели нормы экспериментальных животных. Санкт-Петербург: ЛЕМА, 2013.

[6]

Makarov V.G., Makarova M.N. Abrashova T.V., i dr. Fiziologicheskiye, biokhimicheskiye i biometricheskiye pokazateli normy eksperimental’nykh zhivotnykh. Sankt-Peterburg: LEMA, 2013

[7]

Rybakova AV, Makarova MN, Avdeeva OI, et al. The percentage ratio of the mass of internal organs from the viewpoint of the search of the target organ in evaluating toxicity [Assessment of the effects of drugs on the most sensitive internal organs (target organs); experiments on white rats]. International bulletin of Veterinary Medicine. 2013;(2):58–63. (In Russ.)

[8]

Рыбакова А.В., Макарова М.Н., Авдеева О.И., и др. Процентное соотношения массы внутренних органов с точки зрения поиска органа-мишени при оценке токсического воздействия [К оценке влияния лекарственных препаратов на наиболее чувствительные внутренние органы (органы-мишени); опыты на белых крысах // Международный вестник ветеринарии. 2013. № 2. С. 58–63

[9]

Rybakova AV, Makarova MN, Avdeeva OI, et al. The percentage ratio of the mass of internal organs from the viewpoint of the search of the target organ in evaluating toxicity [Assessment of the effects of drugs on the most sensitive internal organs (target organs); experiments on white rats]. International bulletin of Veterinary Medicine. 2013;(2):58–63. (In Russ.)

[10]

Navarro-Masip È, Manocchio F, Colom-Pellicer M, et al. Vitis vinifera L. Bioactive Components Modulate Adipose Tissue Metabolic Markers of Healthy Rats in a Photoperiod-Dependent Manner. Mol Nutr Food Res. 2023;67(17):e2300074. doi: 10.1002/mnfr.202300074

[11]

Navarro-Masip È., Manocchio F., Colom-Pellicer M., et al. Vitis vinifera L. Bioactive Components Modulate Adipose Tissue Metabolic Markers of Healthy Rats in a Photoperiod-Dependent Manner // Mol Nutr Food Res. 2023. Vol. 67, N 17. ID: e2300074. doi: 10.1002/mnfr.202300074

[12]

Navarro-Masip È, Manocchio F, Colom-Pellicer M, et al. Vitis vinifera L. Bioactive Components Modulate Adipose Tissue Metabolic Markers of Healthy Rats in a Photoperiod-Dependent Manner. Mol Nutr Food Res. 2023;67(17):e2300074. doi: 10.1002/mnfr.202300074

[13]

Kotelnikova SA. Neuroendocrine homeostasis under toxic stress conditions in different light regimes [dissertation]. Astrakhan; 2015. Available from: https://rusneb.ru/catalog/000199_000009_008143337/ (In Russ.) EDN: KTPJEX

[14]

Котельникова С.А. Нейроэндокринный гомеостаз в условиях токсического стресса при различных режимах освещенности: дис. ... доктора биологических наук. Астрахань, 2015. Режим доступа: https://rusneb.ru/catalog/000199_000009_008143337/ Дата обращения: 27.05.2024. EDN: KTPJEX

[15]

Kotelnikova SA. Neuroendocrine homeostasis under toxic stress conditions in different light regimes [dissertation]. Astrakhan; 2015. Available from: https://rusneb.ru/catalog/000199_000009_008143337/ (In Russ.) EDN: KTPJEX

[16]

Otsuka T, Goto M, Kawai M, et al. Photoperiod regulates corticosterone rhythms by altered adrenal sensitivity via melatonin-independent mechanisms in Fischer 344 rats and C57BL/6J mice. PLoS One. 2012;7(6):e39090. doi: 10.1371/journal.pone.0039090

[17]

Otsuka T., Goto M., Kawai M., et al. Photoperiod regulates corticosterone rhythms by altered adrenal sensitivity via melatonin-independent mechanisms in Fischer 344 rats and C57BL/6J mice // PLoS One. 2012. Vol. 7, N 6. ID: e39090. doi: 10.1371/journal.pone.0039090

[18]

Otsuka T, Goto M, Kawai M, et al. Photoperiod regulates corticosterone rhythms by altered adrenal sensitivity via melatonin-independent mechanisms in Fischer 344 rats and C57BL/6J mice. PLoS One. 2012;7(6):e39090. doi: 10.1371/journal.pone.0039090

[19]

Morgan PJ, Ross AW, Mercer JG, Barrett P. Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol. 2003;177(1):27–34. doi: 10.1677/joe.0.1770027

[20]

Morgan P.J., Ross A.W., Mercer J.G., Barrett P. Photoperiodic programming of body weight through the neuroendocrine hypothalamus // J Endocrinol. 2003. Vol. 177. N 1. P. 27–34. doi: 10.1677/joe.0.1770027

[21]

Morgan PJ, Ross AW, Mercer JG, Barrett P. Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol. 2003;177(1):27–34. doi: 10.1677/joe.0.1770027

[22]

Mariné-Casadó R, Domenech-Coca C, Del Bas JM, et al. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol. 2018;9:1639. doi: 10.3389/fphys.2018.01639

[23]

Mariné-Casadó R., Domenech-Coca C., Del Bas J.M., et al. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats // Front Physiol. 2018. Vol. 9. ID: 1639. doi: 10.3389/fphys.2018.01639

[24]

Mariné-Casadó R, Domenech-Coca C, Del Bas JM, et al. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol. 2018;9:1639. doi: 10.3389/fphys.2018.01639

[25]

Otsuka T, Kawai M, Togo Y, et al. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice. Psychoneuroendocrinology. 2014;40:37–47. doi: 10.1016/j.psyneuen.2013.10.013

[26]

Otsuka T., Kawai M., Togo Y., et al. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice // Psychoneuroendocrinology. 2014. Vol. 40. P. 37–47. doi: 10.1016/j.psyneuen.2013.10.013

[27]

Otsuka T, Kawai M, Togo Y, et al. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice. Psychoneuroendocrinology. 2014;40:37–47. doi: 10.1016/j.psyneuen.2013.10.013

[28]

Otsuka T, Goda R, Iwamoto A, et al. Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice. Br J Nutr. 2015;114(10):1734–1743. doi: 10.1017/S0007114515003396

[29]

Otsuka T., Goda R., Iwamoto A., et al. Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice // Br J Nutr. 2015. Vol. 114, N 10. P. 1734–1743. doi: 10.1017/S0007114515003396

[30]

Otsuka T, Goda R, Iwamoto A, et al. Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice. Br J Nutr. 2015;114(10):1734–1743. doi: 10.1017/S0007114515003396

[31]

Jones EJ, Poole KC, Sollini J, et al. Seasonal weight changes in laboratory ferrets. PLoS One. 2020;15(8):e0232733. doi: 10.1371/journal.pone.0232733

[32]

Jones E.J., Poole K.C., Sollini J., et al. Seasonal weight changes in laboratory ferrets // PLoS One. 2020. Vol. 15, N 8. ID: e0232733. doi: 10.1371/journal.pone.0232733

[33]

Jones EJ, Poole KC, Sollini J, et al. Seasonal weight changes in laboratory ferrets. PLoS One. 2020;15(8):e0232733. doi: 10.1371/journal.pone.0232733

[34]

Cohen IR, Mann DR. Seasonal changes associated with puberty in female rats: effect of photoperiod and ACTH administration. Biol Reprod. 1979;20(4):757–762. doi: 10.1095/biolreprod20.4.757

[35]

Cohen I.R., Mann D.R. Seasonal changes associated with puberty in female rats: effect of photoperiod and ACTH administration // Biol Reprod. 1979. Vol. 20, N 4. P. 757–762. doi: 10.1095/biolreprod20.4.757

[36]

Cohen IR, Mann DR. Seasonal changes associated with puberty in female rats: effect of photoperiod and ACTH administration. Biol Reprod. 1979;20(4):757–762. doi: 10.1095/biolreprod20.4.757

[37]

Sharaeva GA. Changes in the thymus and spleen mass index of white rats under conditions of cadmium salt intoxication in different seasons of the year. Science and Modernity. 2010;3(1):22–26 (In Russ.)

[38]

Шараева Г.А. Изменения индекса массы тимуса и селезёнки белых крыс в условиях интоксикации солью кадмия в разные сезоны года // Наука и современность. 2010. № 3-1. C. 22–26

[39]

Sharaeva GA. Changes in the thymus and spleen mass index of white rats under conditions of cadmium salt intoxication in different seasons of the year. Science and Modernity. 2010;3(1):22–26 (In Russ.)

[40]

Long GG, Symanowski JT, Roback K. Precision in data acquisition and reporting of organ weights in rats and mice. Toxicol Pathol. 1998;26(3):316–318. doi: 10.1177/019262339802600304

[41]

Long G.G., Symanowski J.T., Roback K. Precision in data acquisition and reporting of organ weights in rats and mice // Toxicol Pathol. 1998. Vol. 26, N 3. P. 316–318. doi: 10.1177/019262339802600304

[42]

Long GG, Symanowski JT, Roback K. Precision in data acquisition and reporting of organ weights in rats and mice. Toxicol Pathol. 1998;26(3):316–318. doi: 10.1177/019262339802600304

[43]

Bailey SA, Zidell RH, Perry RW. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol. 2004;32(4):448–466. doi: 10.1080/01926230490465874

[44]

Bailey S.A., Zidell R.H., Perry R.W. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? // Toxicol Pathol. 2004. Vol. 32, N 4. P. 448–466. doi: 10.1080/01926230490465874

[45]

Bailey SA, Zidell RH, Perry RW. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol. 2004;32(4):448–466. doi: 10.1080/01926230490465874

[46]

Tavolaro FM, Thomson LM, Ross AW, et. al. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats. J Neuroendocrinol. 2015;27(2):79–87. doi: 10.1111/jne.12241

[47]

Tavolaro F.M., Thomson L.M., Ross A.W., et al. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats // J Neuroendocrinol. 2015. Vol. 27. N 2. P. 79–87. doi: 10.1111/jne.12241

[48]

Tavolaro FM, Thomson LM, Ross AW, et. al. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats. J Neuroendocrinol. 2015;27(2):79–87. doi: 10.1111/jne.12241

[49]

Bartke A, Amador AG, Chandrashekar V, Klemcke HG. Seasonal differences in testicular receptors and steroidogenesis. J Steroid Biochem. 1987;27(1-3):581–587. doi: 10.1016/0022-4731(87)90357-8

[50]

Bartke A., Amador A.G., Chandrashekar V., Klemcke H.G. Seasonal differences in testicular receptors and steroidogenesis // J Steroid Biochem. 1987. Vol. 27. N 1-3. P. 581–587. doi: 10.1016/0022-4731(87)90357-8

[51]

Bartke A, Amador AG, Chandrashekar V, Klemcke HG. Seasonal differences in testicular receptors and steroidogenesis. J Steroid Biochem. 1987;27(1-3):581–587. doi: 10.1016/0022-4731(87)90357-8

[52]

Muteka, S.P., Chimimba, C.T., Bastos, A.D.S. et al. Photoperiodic effects on the male gonads of the Namibian gerbil, Gerbilliscus cf. leucogaster from central Namibia. Mamm Biol. 2020;100:165–171. doi: 10.1007/s42991-020-00008-y

[53]

Muteka S.P., Chimimba C.T., Bastos A.D.S., et al. Photoperiodic effects on the male gonads of the Namibian gerbil, Gerbilliscus cf. leucogaster from central Namibia // Mamm Biol. 2020. Vol. 100. P. 165–171. doi: 10.1007/s42991-020-00008-y

[54]

Muteka, S.P., Chimimba, C.T., Bastos, A.D.S. et al. Photoperiodic effects on the male gonads of the Namibian gerbil, Gerbilliscus cf. leucogaster from central Namibia. Mamm Biol. 2020;100:165–171. doi: 10.1007/s42991-020-00008-y

[55]

Nishiwaki-Ohkawa T, Yoshimura T. Molecular basis for regulating seasonal reproduction in vertebrates. J Endocrinol. 2016;229(3):R117–R127. doi: 10.1530/JOE-16-0066

[56]

Nishiwaki-Ohkawa T., Yoshimura T.. Molecular basis for regulating seasonal reproduction in vertebrates // J Endocrinol. 2016. Vol. 229. N 3. P. 117–127. doi: 10.1530/JOE-16-0066

[57]

Nishiwaki-Ohkawa T, Yoshimura T. Molecular basis for regulating seasonal reproduction in vertebrates. J Endocrinol. 2016;229(3):R117–R127. doi: 10.1530/JOE-16-0066

[58]

Nirogi R, Goyal VK, Jana S, et al. What suits best for organ weight analysis: Review of relationship between organ weight and body/brain weight for rodent toxicity studies. IJPSR 2014; 5(4):1525–1532. doi: 10.13040/IJPSR.0975-8232.5(4).1525-32

[59]

Nirogi R., Goyal V.K., Jana S., et al. What suits best for organ weight analysis: Review of relationship between organ weight and body/brain weight for rodent toxicity studies // IJPSR. 2014. Vol. 5. N 4. P. 1525–1532. doi: 10.13040/IJPSR.0975-8232.5(4).1525-32

[60]

Nirogi R, Goyal VK, Jana S, et al. What suits best for organ weight analysis: Review of relationship between organ weight and body/brain weight for rodent toxicity studies. IJPSR 2014; 5(4):1525–1532. doi: 10.13040/IJPSR.0975-8232.5(4).1525-32

[61]

Faqi AS, editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 3rd ed. London: Academic Press; 2024.

[62]

Faqi A.S., editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 3rd ed. London: Academic Press, 2024.

[63]

Faqi AS, editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 3rd ed. London: Academic Press; 2024.

[64]

Lazic SE, Semenova E, Williams DP. Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights. Sci Rep. 2020;10(1):6625. doi: 10.1038/s41598-020-63465-y

[65]

Lazic S.E., Semenova E., Williams D.P. Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights // Sci Rep. 2020. Vol. 10, N 1. ID: 6625. doi: 10.1038/s41598-020-63465-y

[66]

Lazic SE, Semenova E, Williams DP. Determining organ weight toxicity with Bayesian causal models: Improving on the analysis of relative organ weights. Sci Rep. 2020;10(1):6625. doi: 10.1038/s41598-020-63465-y

Funding

Правительство Российской ФедерацииGovernment of the Russian FederationGovernment of the Russian Federation(124021600054-9)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/