Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies
Elena I. Lebedeva , Anatoliy T. Shchastniy , Andrei S. Babenka , Victor N. Martinkov , Dmitry A. Zinovkin , Eldar A. Nadyrov
Morphology ›› 2024, Vol. 162 ›› Issue (2) : 140 -153.
Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies
BACKGROUND: Currently, researchers describe challenges in developing new treatments for fibrosis and cirrhosis: poor quality of preclinical models, insufficient trial duration, and lack of markers of therapeutic response. A separate task is to standardize the process of liver cirrhosis formation in preclinical trials, which is necessary to obtain accurate quantitative estimates in a short timeframe.
AIM: This study aimed to develop a mathematical model for the formation of liver cirrhosis during preclinical trials.
MATERIALS AND METHODS: Liver fibrosis and cirrhosis were induced in male Wistar rats using freshly prepared thioacetamide solution for 17 weeks. The area of connective tissue was determined as a percentage of the image area. The area of interlobular veins was measured in µm2. The numbers of cells expressing the FAP marker and the α-SMA marker were counted. The level of mRNA expression of the Vegfa and Yap1 genes was assessed by real-time polymerase chain reaction. A mathematical model for classifying observations into stages was constructed using multiple logistic regression with stepwise selection of predictors, followed by calculation of sensitivity, specificity, and area under the curve with a 95% confidence interval based on ROC analysis.
RESULTS: As a result of the analysis, a mathematical model of liver cirrhosis formation was developed. The model is based on the values of two indicators: FAP+ cells and Yap1 mRNA and demonstrated good quality. The resulting value of the area under the ROC curve of 0.883 suggests good results for classifying cases.
CONCLUSIONS: The mathematical model makes it possible to differentiate the stage of liver cirrhosis from the stage of fibrosis during preclinical studies. It provides a foundation for studying the pathogenesis of liver fibrosis and cirrhosis, identifying new potential molecular targets for antifibrotic therapy, and reducing the number of expensive, labor-intensive laboratory tests.
experimental fibrosis and cirrhosis of the liver / mathematical model / histological and molecular genetic studies
| [1] |
Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2 |
| [2] |
Huang D.Q., Terrault N.A., Tacke F., et al. Global epidemiology of cirrhosis — aetiology, trends and predictions // Nat Rev Gastroenterol Hepatol. 2023. Vol. 20, N 6. P. 388–398. doi: 10.1038/s41575-023-00759-2 |
| [3] |
Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2 |
| [4] |
Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500 |
| [5] |
Jangra A., Kothari A., Sarma P., et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis // Cells. 2022. Vol. 11, N 9. P. 1500. doi: 10.3390/cells11091500 |
| [6] |
Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500 |
| [7] |
Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045 |
| [8] |
Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye // Hepatol Forum. 2023. Vol. 4, N 1. P. 40–46. doi: 10.14744/hf.2022.2022.0045 |
| [9] |
Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045 |
| [10] |
Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671 |
| [11] |
Pei Q., Yi Q., Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities // Int J Mol Sci. 2023. Vol. 24, N 11. P. 9671. doi: 10.3390/ijms24119671 |
| [12] |
Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671 |
| [13] |
Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658 |
| [14] |
Liu C., Hou X., Mo K., et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis // J Clin Lab Anal. 2022. Vol. 36, N 10. Р. e24658. doi: 10.1002/jcla.24658 |
| [15] |
Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658 |
| [16] |
Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002 |
| [17] |
Guindi M, Liver fibrosis: the good, the bad, and the patchy-an update // Hum Pathol. 2023. Vol. 141. P. 201–211. doi: 10.1016/j.humpath.2023.01.002 |
| [18] |
Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002 |
| [19] |
Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270 |
| [20] |
Kolaric T.O., Kuna L., Covic M., et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update // Curr Issues Mol Biol. 2023. Vol. 45, N 5. P. 4246–4260. doi: 10.3390/cimb45050270 |
| [21] |
Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270 |
| [22] |
Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06 |
| [23] |
Krylov D.P., Rodimova S.A., Karabut M.M., Kuznetsova D.S. experimental models for studying structural and functional state of the pathological liver (review) // Sovrem Tekhnologii Med. 2023. Vol. 15, N 4. P. 65–82. doi: 10.17691/stm2023.15.4.06 |
| [24] |
Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06 |
| [25] |
Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333 |
| [26] |
Lee H.J., Mun S.J., Jung C.R., et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line // Biotechnol Bioeng. 2023. Vol. 120, N 5. P. 1241–1253. doi: 10.1002/bit.28333 |
| [27] |
Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333 |
| [28] |
Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010 |
| [29] |
Lee Y.S., Seki E. In vivo and in vitro models to study liver fibrosis: mechanisms and limitations // Cell Mol Gastroenterol Hepatol. 2023. Vol. 16, N 3. P. 355–367. doi: 10.1016/j.jcmgh.2023.05.010 |
| [30] |
Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010 |
| [31] |
Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031 |
| [32] |
Лебедева Е.И., Щастный А.Т., Бабенко А.С. Модель токсического фиброза у крыс линии wistar: морфологические и молекулярно-генетические параметры точки перехода в цирроз // Гены и клетки. 2023. Т. 18, № 3. С. 219–234. EDN: HTSXYA doi: 10.23868/gc546031 |
| [33] |
Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031 |
| [34] |
Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG |
| [35] |
Красочко П.А., Щастный А.Т., Лебедева Е.И., и др. Методические рекомендации по созданию экспериментальной модели токсического фиброза и цирроза, индуцированного тиоацетамидом. Минск: РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», 2021. 13 с. EDN: ZNOOHG |
| [36] |
Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG |
| [37] |
Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD |
| [38] |
Лебедева Е.И., Красочко П.А., Щастный А.Т., и др. Рекомендации по оценке прогрессирования и регресса токсического фиброза печени в доклинических исследованиях. Минск: РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», 2023. 8 с. EDN: LSMJUD |
| [39] |
Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD |
| [40] |
Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706 |
| [41] |
Lay A.J., Zhang H.E., McCaughan G.W., Gorrell M.D. Fibroblast activation protein in liver fibrosis // Front Biosci (Landmark Ed). 2019. Vol. 24, N 1. P. 1–17. doi: 10.2741/4706 |
| [42] |
Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706 |
| [43] |
Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005 |
| [44] |
Yang A.T., Kim Y.O., Yan X.Z., et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis // Cell Mol Gastroenterol Hepatol. 2023. Vol. 15, N 4. P. 841–867. doi: 10.1016/j.jcmgh.2022.12.005 |
| [45] |
Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005 |
| [46] |
Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142 |
| [47] |
Shi Y., Kong Z., Liu P., et al. Oncogenesis, microenvironment modulation and clinical potentiality of FAP in glioblastoma: lessons learned from other solid tumors // Cells. 2021. Vol. 10, N 5. P. 1142. doi: 10.3390/cells10051142 |
| [48] |
Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142 |
| [49] |
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344 |
| [50] |
Ahmad A., Nawaz M.I. Molecular mechanism of VEGF and its role in pathological angiogenesis // J Cell Biochem. 2022. Vol. 123, N 12. P. 1938–1965. doi: 10.1002/jcb.30344 |
| [51] |
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344 |
| [52] |
Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299 |
| [53] |
Lin Y., Dong M.Q., Liu Z.M., et al. A strategy of vascular-targeted therapy for liver fibrosis // Hepatology. 2022. Vol. 76, N 3. P. 660–675. doi: 10.1002/hep.32299 |
| [54] |
Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299 |
| [55] |
Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294 |
| [56] |
Xiang D., Zou J., Zhu X., et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling // Phytomedicine. 2020. Vol. 78. P. 153294. doi: 10.1016/j.phymed.2020.153294 |
| [57] |
Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294 |
| [58] |
Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561 |
| [59] |
Dai Y., Hao P., Sun Z., et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis // J Endocrinol. 2021. Vol. 249, N 2. P. 149–161. doi: 10.1530/JOE-20-0561 |
| [60] |
Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561 |
| [61] |
Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061 |
| [62] |
Kamm D.R., McCommis K.S. Hepatic stellate cells in physiology and pathology // J Physiol. 2022. Vol. 600, N 8. P. 1825–1837. doi: 10.1113/JP281061 |
| [63] |
Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061 |
| [64] |
O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528 |
| [65] |
O’Hara S.P., LaRusso N.F. Portal fibroblasts: A renewable source of liver myofibroblasts // Hepatology. 2022. Vol. 76, N 5. P. 1240–1242. doi: 10.1002/hep.32528 |
| [66] |
O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528 |
| [67] |
Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008 |
| [68] |
Kim H.Y., Sakane S., Eguileor A., et al. The origin and fate of liver myofibroblasts // Cell Mol Gastroenterol Hepatol. 2024. Vol. 17, N 1. P. 93–106. doi: 10.1016/j.jcmgh.2023.09.008 |
| [69] |
Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008 |
| [70] |
Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797 |
| [71] |
Wu Y., Li Z., Xiu A.Y., et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice // Drug Des Devel Ther. 2019. Vol. 13. P. 2667–2676. doi: 10.2147/DDDT.S210797 |
| [72] |
Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797 |
| [73] |
Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878 |
| [74] |
Sato K., Marzioni M., Meng F., et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances // Hepatology. 2019. Vol. 69, N 1. Р. 420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019. Vol. 70, N 3. P. 1089. doi: 10.1002/hep.30878 |
| [75] |
Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878 |
| [76] |
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640 |
| [77] |
Acharya P., Chouhan K., Weiskirchen S., Weiskirchen R. Cellular mechanisms of liver fibrosis // Front Pharmacol. 2021. Vol. 12. P. 671640. doi: 10.3389/fphar.2021.671640 |
| [78] |
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640 |
| [79] |
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732 |
| [80] |
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma // Expert Rev Gastroenterol Hepatol. 2021. Vol. 15, N 3. P. 217–233. doi: 10.1080/17474124.2021.1842732 |
| [81] |
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732 |
| [82] |
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344 |
| [83] |
Ahmad A., Nawaz M.I. Molecular mechanism of VEGF and its role in pathological angiogenesis // J Cell Biochem. 2022. Vol. 123, N 12. P. 1938–1965. doi: 10.1002/jcb.30344 |
| [84] |
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344 |
| [85] |
Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912 |
| [86] |
Zhang W., Han L., Wen Y., et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury // Brain Behav. 2023. Vol. 13, N 3. P. e2912. doi: 10.1002/brb3.2912 |
| [87] |
Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912 |
| [88] |
Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326 |
| [89] |
Du K., Maeso-Díaz R., Oh S.H., et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis // Hepatology. 2023. Vol. 77, N 6. P. 1998–2015. doi: 10.1097/HEP.0000000000000326 |
| [90] |
Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326 |
Eco-Vector
/
| 〈 |
|
〉 |