Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies

Elena I. Lebedeva , Anatoliy T. Shchastniy , Andrei S. Babenka , Victor N. Martinkov , Dmitry A. Zinovkin , Eldar A. Nadyrov

Morphology ›› 2024, Vol. 162 ›› Issue (2) : 140 -153.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (2) : 140 -153. DOI: 10.17816/morph.632588
Original Study Articles
research-article

Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies

Author information +
History +
PDF

Abstract

BACKGROUND: Currently, researchers describe challenges in developing new treatments for fibrosis and cirrhosis: poor quality of preclinical models, insufficient trial duration, and lack of markers of therapeutic response. A separate task is to standardize the process of liver cirrhosis formation in preclinical trials, which is necessary to obtain accurate quantitative estimates in a short timeframe.

AIM: This study aimed to develop a mathematical model for the formation of liver cirrhosis during preclinical trials.

MATERIALS AND METHODS: Liver fibrosis and cirrhosis were induced in male Wistar rats using freshly prepared thioacetamide solution for 17 weeks. The area of connective tissue was determined as a percentage of the image area. The area of interlobular veins was measured in µm2. The numbers of cells expressing the FAP marker and the α-SMA marker were counted. The level of mRNA expression of the Vegfa and Yap1 genes was assessed by real-time polymerase chain reaction. A mathematical model for classifying observations into stages was constructed using multiple logistic regression with stepwise selection of predictors, followed by calculation of sensitivity, specificity, and area under the curve with a 95% confidence interval based on ROC analysis.

RESULTS: As a result of the analysis, a mathematical model of liver cirrhosis formation was developed. The model is based on the values of two indicators: FAP+ cells and Yap1 mRNA and demonstrated good quality. The resulting value of the area under the ROC curve of 0.883 suggests good results for classifying cases.

CONCLUSIONS: The mathematical model makes it possible to differentiate the stage of liver cirrhosis from the stage of fibrosis during preclinical studies. It provides a foundation for studying the pathogenesis of liver fibrosis and cirrhosis, identifying new potential molecular targets for antifibrotic therapy, and reducing the number of expensive, labor-intensive laboratory tests.

Keywords

experimental fibrosis and cirrhosis of the liver / mathematical model / histological and molecular genetic studies

Cite this article

Download citation ▾
Elena I. Lebedeva, Anatoliy T. Shchastniy, Andrei S. Babenka, Victor N. Martinkov, Dmitry A. Zinovkin, Eldar A. Nadyrov. Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies. Morphology, 2024, 162(2): 140-153 DOI:10.17816/morph.632588

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2

[2]

Huang D.Q., Terrault N.A., Tacke F., et al. Global epidemiology of cirrhosis — aetiology, trends and predictions // Nat Rev Gastroenterol Hepatol. 2023. Vol. 20, N 6. P. 388–398. doi: 10.1038/s41575-023-00759-2

[3]

Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2

[4]

Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500

[5]

Jangra A., Kothari A., Sarma P., et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis // Cells. 2022. Vol. 11, N 9. P. 1500. doi: 10.3390/cells11091500

[6]

Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500

[7]

Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045

[8]

Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye // Hepatol Forum. 2023. Vol. 4, N 1. P. 40–46. doi: 10.14744/hf.2022.2022.0045

[9]

Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045

[10]

Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671

[11]

Pei Q., Yi Q., Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities // Int J Mol Sci. 2023. Vol. 24, N 11. P. 9671. doi: 10.3390/ijms24119671

[12]

Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671

[13]

Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658

[14]

Liu C., Hou X., Mo K., et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis // J Clin Lab Anal. 2022. Vol. 36, N 10. Р. e24658. doi: 10.1002/jcla.24658

[15]

Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658

[16]

Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002

[17]

Guindi M, Liver fibrosis: the good, the bad, and the patchy-an update // Hum Pathol. 2023. Vol. 141. P. 201–211. doi: 10.1016/j.humpath.2023.01.002

[18]

Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002

[19]

Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270

[20]

Kolaric T.O., Kuna L., Covic M., et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update // Curr Issues Mol Biol. 2023. Vol. 45, N 5. P. 4246–4260. doi: 10.3390/cimb45050270

[21]

Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270

[22]

Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06

[23]

Krylov D.P., Rodimova S.A., Karabut M.M., Kuznetsova D.S. experimental models for studying structural and functional state of the pathological liver (review) // Sovrem Tekhnologii Med. 2023. Vol. 15, N 4. P. 65–82. doi: 10.17691/stm2023.15.4.06

[24]

Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06

[25]

Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333

[26]

Lee H.J., Mun S.J., Jung C.R., et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line // Biotechnol Bioeng. 2023. Vol. 120, N 5. P. 1241–1253. doi: 10.1002/bit.28333

[27]

Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333

[28]

Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010

[29]

Lee Y.S., Seki E. In vivo and in vitro models to study liver fibrosis: mechanisms and limitations // Cell Mol Gastroenterol Hepatol. 2023. Vol. 16, N 3. P. 355–367. doi: 10.1016/j.jcmgh.2023.05.010

[30]

Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010

[31]

Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031

[32]

Лебедева Е.И., Щастный А.Т., Бабенко А.С. Модель токсического фиброза у крыс линии wistar: морфологические и молекулярно-генетические параметры точки перехода в цирроз // Гены и клетки. 2023. Т. 18, № 3. С. 219–234. EDN: HTSXYA doi: 10.23868/gc546031

[33]

Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031

[34]

Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG

[35]

Красочко П.А., Щастный А.Т., Лебедева Е.И., и др. Методические рекомендации по созданию экспериментальной модели токсического фиброза и цирроза, индуцированного тиоацетамидом. Минск: РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», 2021. 13 с. EDN: ZNOOHG

[36]

Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG

[37]

Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD

[38]

Лебедева Е.И., Красочко П.А., Щастный А.Т., и др. Рекомендации по оценке прогрессирования и регресса токсического фиброза печени в доклинических исследованиях. Минск: РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», 2023. 8 с. EDN: LSMJUD

[39]

Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD

[40]

Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706

[41]

Lay A.J., Zhang H.E., McCaughan G.W., Gorrell M.D. Fibroblast activation protein in liver fibrosis // Front Biosci (Landmark Ed). 2019. Vol. 24, N 1. P. 1–17. doi: 10.2741/4706

[42]

Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706

[43]

Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005

[44]

Yang A.T., Kim Y.O., Yan X.Z., et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis // Cell Mol Gastroenterol Hepatol. 2023. Vol. 15, N 4. P. 841–867. doi: 10.1016/j.jcmgh.2022.12.005

[45]

Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005

[46]

Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142

[47]

Shi Y., Kong Z., Liu P., et al. Oncogenesis, microenvironment modulation and clinical potentiality of FAP in glioblastoma: lessons learned from other solid tumors // Cells. 2021. Vol. 10, N 5. P. 1142. doi: 10.3390/cells10051142

[48]

Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142

[49]

Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344

[50]

Ahmad A., Nawaz M.I. Molecular mechanism of VEGF and its role in pathological angiogenesis // J Cell Biochem. 2022. Vol. 123, N 12. P. 1938–1965. doi: 10.1002/jcb.30344

[51]

Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344

[52]

Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299

[53]

Lin Y., Dong M.Q., Liu Z.M., et al. A strategy of vascular-targeted therapy for liver fibrosis // Hepatology. 2022. Vol. 76, N 3. P. 660–675. doi: 10.1002/hep.32299

[54]

Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299

[55]

Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294

[56]

Xiang D., Zou J., Zhu X., et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling // Phytomedicine. 2020. Vol. 78. P. 153294. doi: 10.1016/j.phymed.2020.153294

[57]

Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294

[58]

Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561

[59]

Dai Y., Hao P., Sun Z., et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis // J Endocrinol. 2021. Vol. 249, N 2. P. 149–161. doi: 10.1530/JOE-20-0561

[60]

Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561

[61]

Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061

[62]

Kamm D.R., McCommis K.S. Hepatic stellate cells in physiology and pathology // J Physiol. 2022. Vol. 600, N 8. P. 1825–1837. doi: 10.1113/JP281061

[63]

Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061

[64]

O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528

[65]

O’Hara S.P., LaRusso N.F. Portal fibroblasts: A renewable source of liver myofibroblasts // Hepatology. 2022. Vol. 76, N 5. P. 1240–1242. doi: 10.1002/hep.32528

[66]

O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528

[67]

Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008

[68]

Kim H.Y., Sakane S., Eguileor A., et al. The origin and fate of liver myofibroblasts // Cell Mol Gastroenterol Hepatol. 2024. Vol. 17, N 1. P. 93–106. doi: 10.1016/j.jcmgh.2023.09.008

[69]

Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008

[70]

Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797

[71]

Wu Y., Li Z., Xiu A.Y., et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice // Drug Des Devel Ther. 2019. Vol. 13. P. 2667–2676. doi: 10.2147/DDDT.S210797

[72]

Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797

[73]

Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878

[74]

Sato K., Marzioni M., Meng F., et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances // Hepatology. 2019. Vol. 69, N 1. Р. 420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019. Vol. 70, N 3. P. 1089. doi: 10.1002/hep.30878

[75]

Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878

[76]

Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640

[77]

Acharya P., Chouhan K., Weiskirchen S., Weiskirchen R. Cellular mechanisms of liver fibrosis // Front Pharmacol. 2021. Vol. 12. P. 671640. doi: 10.3389/fphar.2021.671640

[78]

Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640

[79]

Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732

[80]

Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma // Expert Rev Gastroenterol Hepatol. 2021. Vol. 15, N 3. P. 217–233. doi: 10.1080/17474124.2021.1842732

[81]

Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732

[82]

Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344

[83]

Ahmad A., Nawaz M.I. Molecular mechanism of VEGF and its role in pathological angiogenesis // J Cell Biochem. 2022. Vol. 123, N 12. P. 1938–1965. doi: 10.1002/jcb.30344

[84]

Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344

[85]

Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912

[86]

Zhang W., Han L., Wen Y., et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury // Brain Behav. 2023. Vol. 13, N 3. P. e2912. doi: 10.1002/brb3.2912

[87]

Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912

[88]

Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326

[89]

Du K., Maeso-Díaz R., Oh S.H., et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis // Hepatology. 2023. Vol. 77, N 6. P. 1998–2015. doi: 10.1097/HEP.0000000000000326

[90]

Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326

Funding

Государственная программа научных исследований Министерства здравоохранения Республики Беларусь (регистр.)State program of scientific research of the Ministry of Health of the Republic of BelarusState program of scientific research of the Ministry of Health of the Republic of Belarus(20190107)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/