Electron microscopy study of left ventricular cardiomyocytes in adult rats born preterm

Vera V. Ivanova , Ivan V. Milto

Morphology ›› 2024, Vol. 162 ›› Issue (1) : 63 -71.

PDF (2189KB)
Morphology ›› 2024, Vol. 162 ›› Issue (1) : 63 -71. DOI: 10.17816/morph.631920
Original Study Articles
research-article

Electron microscopy study of left ventricular cardiomyocytes in adult rats born preterm

Author information +
History +
PDF (2189KB)

Abstract

BACKGROUND: Preterm birth is a risk factor for the early development of cardiovascular diseases. Thus far, based on the results of clinical studies, the ultrastructural features of cardiomyocytes in adolescents and adults born prematurely can be identified. Thus, experiments aimed at studying the effects of preterm birth on the ultrastructure of cardiomyocytes in the late postnatal period of ontogenesis are relevant.

AIM: To identify the ultrastructural features of left ventricular cardiomyocytes in preterm adult rats.

MATERIALS AND METHODS: The study was conducted on full-term (n=4, pregnancy duration 22 days) and preterm (n=4, pregnancy duration 21 days) male Wistar rats. Preterm labor was induced by mifepristone injection to pregnant rats. Preterm and full-term offspring were removed from the experiment on day 180 of the postnatal period of ontogenesis. Fragments of the left ventricle of the heart of preterm and full-term rats were used for the ultrastructural studies of the cardiomyocytes (electron transmission microscopy). Electron microphotographs of longitudinal sections of contractile cardiomyocytes were used to determine the relative areas of the nucleus, cytoplasm, myofibrils, and mitochondria.

RESULTS: The structure of the cardiomyocytes of preterm and full-term rats on postnatal day 180 was fundamentally similar. However, the relative area of the nuclei of cardiomyocytes in preterm rats was lower (p=0.02), and the relative area of the cytoplasm was higher (p=0.02) than that in full-term animals. Exclusively, in the cytoplasm of preterm rats, perinuclear swelling of the cytoplasm, thinning of myofibrils, and signs of mitochondrial damage, such as destruction of mitochondrial membranes, concentric organization of mitochondrial cristae, and dissociation of mitochondrial clusters, were observed.

CONCLUSION: Preterm birth has chronic negative effects on the ultrastructure of cardiomyocytes. The observed ultrastructural changes lead to the disruption of energy production in the cardiomyocytes in the late postnatal period of ontogenesis of preterm rats.

Keywords

preterm birth / cardiomyocytes / ultrastructure / animal experimentation

Cite this article

Download citation ▾
Vera V. Ivanova, Ivan V. Milto. Electron microscopy study of left ventricular cardiomyocytes in adult rats born preterm. Morphology, 2024, 162(1): 63-71 DOI:10.17816/morph.631920

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lewandowski AJ, Levy PT, Bates ML, et al. Impact of the vulnerable preterm heart and circulation on adult cardiovascular disease risk. Hypertension. 2020;76(4):1028–1037. doi: 10.1161/HYPERTENSIONAHA.120.15574

[2]

Lewandowski A.J., Levy P.T., Bates M.L., et al. Impact of the vulnerable preterm heart and circulation on adult cardiovascular disease risk // Hypertension. 2020. Vol. 76, N 4. P. 1028–1037. doi: 10.1161/HYPERTENSIONAHA.120.15574

[3]

Lewandowski AJ, Levy PT, Bates ML, et al. Impact of the vulnerable preterm heart and circulation on adult cardiovascular disease risk. Hypertension. 2020;76(4):1028–1037. doi: 10.1161/HYPERTENSIONAHA.120.15574

[4]

Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. doi: 10.1161/CIRCULATIONAHA.112.126920

[5]

Lewandowski A.J., Augustine D., Lamata P., et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function // Circulation. 2013. Vol. 127, N 2. P. 197–206. doi: 10.1161/CIRCULATIONAHA.112.126920

[6]

Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. doi: 10.1161/CIRCULATIONAHA.112.126920

[7]

Lewandowski AJ, Raman B, Bertagnolli M, et al. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J Am CollCardiol. 2021;78(7):683–692. doi: 10.1016/j.jacc.2021.05.053

[8]

Lewandowski A.J., Raman B., Bertagnolli M., et al. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood // J Am Coll Cardiol. 2021. Vol. 78, N 7. P. 683–692. doi: 10.1016/j.jacc.2021.05.053

[9]

Lewandowski AJ, Raman B, Bertagnolli M, et al. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J Am CollCardiol. 2021;78(7):683–692. doi: 10.1016/j.jacc.2021.05.053

[10]

François CJ, Barton GP, Corrado PA, et al. Diffuse myocardial fibrosis at cardiac mri in young adults born prematurely: A cross-sectional cohort study. Radiol Cardiothorac Imaging. 2022;4(3): e210224. EDN: AOVHNR doi: 10.1148/ryct.210224

[11]

François C.J., Barton G.P., Corrado P.A., et al. Diffuse myocardial fibrosis at cardiac MRI in young adults born prematurely: A cross-sectional cohort study // Radiol Cardiothorac Imaging. 2022. Vol. 4, N 3. P. e210224. EDN: AOVHNR doi: 10.1148/ryct.210224

[12]

François CJ, Barton GP, Corrado PA, et al. Diffuse myocardial fibrosis at cardiac mri in young adults born prematurely: A cross-sectional cohort study. Radiol Cardiothorac Imaging. 2022;4(3): e210224. EDN: AOVHNR doi: 10.1148/ryct.210224

[13]

Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol Reprod. 1996;55(5):992–995. doi: 10.1095/biolreprod55.5.992

[14]

Dudley D.J., Branch D.W., Edwin S.S., Mitchell M.D. Induction of preterm birth in mice by RU486 // BiolReprod. 1996. Vol. 55, N 5. P. 992–995. doi: 10.1095/biolreprod55.5.992

[15]

Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol Reprod. 1996;55(5):992–995. doi: 10.1095/biolreprod55.5.992

[16]

Kulida LV, ProcenkoЕV, Saryeva OP. Morphological characteristics of the myocardium in deeply premature infants developing under conditions of chronic intrauterine hypoxia. Sovremennye problemy nauki i obrazovaniya. 2023;(1):66. (In Russ.). EDN: QSRYZR doi: 10.17513/spno.32408

[17]

Кулида Л.В., Проценко Е.В., Сарыева О.П. Морфологическая характеристика миокарда глубоконедоношенных новорожденных, развивавшихся в условиях хроничeской внутриутробной гипоксии // Современные проблемы науки и образования. 2023. № 1. С. 66. EDN: QSRYZR doi: 10.17513/spno.32408

[18]

Kulida LV, ProcenkoЕV, Saryeva OP. Morphological characteristics of the myocardium in deeply premature infants developing under conditions of chronic intrauterine hypoxia. Sovremennye problemy nauki i obrazovaniya. 2023;(1):66. (In Russ.). EDN: QSRYZR doi: 10.17513/spno.32408

[19]

Malysheva MV, Kulida LV. Immunohistochemical and ulrastructural parameters of hypoxic myocardial damage in extremely low birth weight neonates. Children’s Med North-West. 2020;8(1):217–218. (In Russ.). EDN: DHFCPZ

[20]

Малышева М.В., Кулида Л.В. Иммуногистохимические и ультраструктурные параметры гипоксических повреждений миокарда у новорожденных с экстремально низкой массой тела // Детская медицина Северо-Запада. 2020. Т. 8, № 1. С. 217–218. EDN: DHFCPZ

[21]

Malysheva MV, Kulida LV. Immunohistochemical and ulrastructural parameters of hypoxic myocardial damage in extremely low birth weight neonates. Children’s Med North-West. 2020;8(1):217–218. (In Russ.). EDN: DHFCPZ

[22]

Goss KN, Kumari S, Tetri LH, et al. Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis. Am J Respir Cell Mol Biol. 2017;56(5):609–619. doi: 10.1165/rcmb.2016-0256OC

[23]

Goss K.N., Kumari S., Tetri L.H., et al. Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis // Am J Respir Cell Mol Biol. 2017. Vol. 56, N 5. Р. 609–619. doi: 10.1165/rcmb.2016-0256OC

[24]

Goss KN, Kumari S, Tetri LH, et al. Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis. Am J Respir Cell Mol Biol. 2017;56(5):609–619. doi: 10.1165/rcmb.2016-0256OC

[25]

Paumard P, Vaillier J, Coulary B, et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002;21(3):221–230. doi: 10.1093/emboj/21.3.221

[26]

Paumard P., Vaillier J., Coulary B., et al. The ATP synthase is involved in generating mitochondrial cristae morphology // EMBO J. 2002. Vol. 21, N 3. Р. 221–230. doi: 10.1093/emboj/21.3.221

[27]

Paumard P, Vaillier J, Coulary B, et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002;21(3):221–230. doi: 10.1093/emboj/21.3.221

[28]

Vincent A, Ng Y, White K, et al. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci Rep. 2016;(6):30610. EDN: YEZXBE doi: 10.1038/srep30610

[29]

Vincent A., Ng Y., White K., et al. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy // Sci Rep. 2016, N 6. Р. 30610. EDN: YEZXBE doi: 10.1038/srep30610

[30]

Vincent A, Ng Y, White K, et al. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci Rep. 2016;(6):30610. EDN: YEZXBE doi: 10.1038/srep30610

[31]

Zhu S, Chen Z, Zhu M, et al. Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of Barth syndrome cardiomyopathy. Circ Heart Fail. 2021;14(6):e008289. EDN: EYQMXJ doi: 10.1161/CIRCHEARTFAILURE.121.008289

[32]

Zhu S., Chen Z., Zhu M., et al. Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of Barth syndrome cardiomyopathy // Circ Heart Fail. 2021. Vol. 14, N 6. Р. e008289. EDN: EYQMXJ doi: 10.1161/CIRCHEARTFAILURE.121.008289

[33]

Zhu S, Chen Z, Zhu M, et al. Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of Barth syndrome cardiomyopathy. Circ Heart Fail. 2021;14(6):e008289. EDN: EYQMXJ doi: 10.1161/CIRCHEARTFAILURE.121.008289

[34]

Rampelt H, Wollweber F, Gerke C, et al. Assembly of the mitochondrial cristae organizer Mic10 is regulated by Mic26-Mic27 antagonism and cardiolipin. J Mol Biol. 2018;430(13):1883–1890. doi: 10.1016/j.jmb.2018.04.037

[35]

Rampelt H., Wollweber F., Gerke C., et al. Assembly of the mitochondrial cristae organizer Mic10 is regulated by Mic26-Mic27 antagonism and cardiolipin // J Mol Biol. 2018. Vol. 430, N 13. P. 1883–1890. doi: 10.1016/j.jmb.2018.04.037

[36]

Rampelt H, Wollweber F, Gerke C, et al. Assembly of the mitochondrial cristae organizer Mic10 is regulated by Mic26-Mic27 antagonism and cardiolipin. J Mol Biol. 2018;430(13):1883–1890. doi: 10.1016/j.jmb.2018.04.037

[37]

Li J, Romestaing C, Han X, et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010;12(2):154–165. EDN: XSJVGR doi: 10.1016/j.cmet.2010.07.003

[38]

Li J., Romestaing C., Han X., et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity // Cell Metab. 2010. Vol. 12, N 2. P. 154–165. EDN: XSJVGR doi: 10.1016/j.cmet.2010.07.003

[39]

Li J, Romestaing C, Han X, et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010;12(2):154–165. EDN: XSJVGR doi: 10.1016/j.cmet.2010.07.003

[40]

Paradies G, Petrosillo G, Pistolese M, et al. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: Involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94(1):53–59. doi: 10.1161/01.RES.0000109416.56608.64

[41]

Paradies G., Petrosillo G., Pistolese M., et al. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: Involvement of reactive oxygen species and cardiolipin // Circ Res. 2004. Vol. 94, N 1. Р. 53–59. doi: 10.1161/01.RES.0000109416.56608.64

[42]

Paradies G, Petrosillo G, Pistolese M, et al. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: Involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94(1):53–59. doi: 10.1161/01.RES.0000109416.56608.64

[43]

Glancy B, Hartnell LM, Combs CA, et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 2017;19(3):487–496. EDN: YYKDGH doi: 10.1016/j.celrep.2017.03.063

[44]

Glancy B., Hartnell L.M., Combs C.A., et al. Power grid protection of the muscle mitochondrial reticulum // Cell Rep. 2017. Vol. 19, N 3. Р. 487–496. EDN: YYKDGH doi: 10.1016/j.celrep.2017.03.063

[45]

Glancy B, Hartnell LM, Combs CA, et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 2017;19(3):487–496. EDN: YYKDGH doi: 10.1016/j.celrep.2017.03.063

[46]

Kumari S, Barton GP, Goss KN. Increased mitochondrial oxygen consumption in adult survivors of preterm birth. Pediatr Res. 2021;90(6):1147–1152. EDN: ESALBB doi: 10.1038/s41390-021-01387-9

[47]

Kumari S., Barton G.P., Goss K.N. Increased mitochondrial oxygen consumption in adult survivors of preterm birth // Pediatr Res. 2021. Vol. 90, N 6. Р. 1147–1152. EDN: ESALBB doi: 10.1038/s41390-021-01387-9

[48]

Kumari S, Barton GP, Goss KN. Increased mitochondrial oxygen consumption in adult survivors of preterm birth. Pediatr Res. 2021;90(6):1147–1152. EDN: ESALBB doi: 10.1038/s41390-021-01387-9

Funding

Russian Science FoundationРоссийский Научный ФондRussian Science Foundation(24-25-00015)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2189KB)

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/