Mitochondrial dysfunction in the pathogenesis of hypertrophic cardiomyopathy
Ivan V. Zhivodernikov , Tatiana V. Kirichenko , Mariya A. Kozlova , Alexander M. Markin , Yuliya V. Markina
Morphology ›› 2023, Vol. 161 ›› Issue (4) : 95 -111.
Mitochondrial dysfunction in the pathogenesis of hypertrophic cardiomyopathy
The pathomorphogenesis of hypertrophic cardiomyopathy is a disruption of the arrangement of muscle cell bundles in the myocardium and is associated with mutations in genes encoding the synthesis of myocardial contractile proteins. Metabolic changes in this pathology are caused by hypertrophy of the interventricular septum due to the disruption of the myocardial contractile apparatus associated with these mutations and mitochondrial dysfunction. Myofiber protein mutations can negatively affect the mitochondria through increased oxidative stress caused by increased ATP demand. The mitochondria are complex organelles with circular DNA and enzyme complexes involved in redox reactions, which cause frequent damage to mitochondrial protein structures and membranes by reactive oxygen species. In this regard, mitochondrial dysfunction can be also caused by mutations in genes encoding mitochondrial proteins, which leads to the disruption of mitophagy and mitochondrial dynamics. The functioning of defective mitochondria is associated with insufficient ATP synthesis and ineffective muscle contraction, which leads to the same consequences at the tissue level as mutations in contractile protein genes.
In this review, we tried to summarize the role of mitochondrial dysfunction in the pathomorphogenesis of hypertrophic cardiomyopathy.
hypertrophic cardiomyopathy / mitochondria / mitochondrial dysfunction
| [1] |
Litt MJ, Ali A, Reza N. Familial hypertrophic cardiomyopathy: diagnosis and management. Vasc Health Risk Manag. 2023;19:211–221. doi: 10.2147/VHRM.S365001 |
| [2] |
Litt M.J., Ali A., Reza N. Familial hypertrophic cardiomyopathy: diagnosis and management // Vasc Health Risk Manag. 2023. Vol. 19. P. 211–221. doi: 10.2147/VHRM.S365001 |
| [3] |
Kozlova MA, Areshidze DA, Chernikov VP, et al. Ultrastructural characteristics of myocardial mitochondria in hypertrophic cardiomyopathy with diffuse-generalized phenotype. Clinical and Experimental Surgery. Petrovsky Journal. 2024;12(1):7–14. EDN: YSAODE doi: 10.33029/2308-1198-2024-12-1-7-14 |
| [4] |
Козлова М.А., Арешидзе Д. А., Черников В. П., и др. Ультраструктурные характеристики митохондрий миокарда при гипертрофической кардиомиопатии диффузно-генерализованного фенотипа // Клиническая и экспериментальная хирургия. Журнал имени академика Б. В. Петровского. 2024. Т. 12, № 1. С. 7–14. EDN: YSAODE doi: 10.33029/2308-1198-2024-12-1-7-14 |
| [5] |
Rhee TM, Kim HK, Kim BS, et al. Impact of coronary artery revascularization on long-term outcome in hypertrophic cardiomyopathy patients: a nationwide population-based cohort study. Sci Rep. 2023;13(1):6412. doi: 10.1038/s41598-023-33344-3 |
| [6] |
Rhee T.M., Kim H. K., Kim B. S., et al. Impact of coronary artery revascularization on long-term outcome in hypertrophic cardiomyopathy patients: a nationwide population-based cohort study // Sci Rep. 2023. Vol. 13, N 1. P. 6412. doi: 10.1038/s41598-023-33344-3 |
| [7] |
Gabrusenko SA, Gudkova AYa, Koziolova NA, et al. 2020 clinical practice guidelines for hypertrophic cardiomyopathy. Russian Journal of Cardiology. 2021;26(5):269–334. EDN: MXDYLE doi: 10.15829/1560-4071-2021-4541 |
| [8] |
Габрусенко С.А., Гудкова А. Я., Козиолова Н. А., и др. Гипертрофическая кардиомиопатия. Клинические рекомендации 2020 // Российский кардиологический журнал. 2021. T. 26, № 5. С. 269–334. EDN: MXDYLE doi: 10.15829/1560-4071-2021-4541 |
| [9] |
Mojumder J, Fan L, Nguyen T, et al. Computational analysis of ventricular mechanics in hypertrophic cardiomyopathy patients. Sci Rep. 2023;13(1):958. doi: 10.1038/s41598-023-28037-w |
| [10] |
Mojumder J., Fan L., Nguyen T., et al. Computational analysis of ventricular mechanics in hypertrophic cardiomyopathy patients // Sci Rep. 2023. Vol. 13, N 1. P. 958. doi: 10.1038/s41598-023-28037-w |
| [11] |
Reza N, De Feria A, Wang T, et al. Left ventricular hypertrophy and hypertrophic cardiomyopathy in adult solid organ transplant recipients. Transplant Direct. 2021;8(1):e1279. doi: 10.1097/TXD.0000000000001279 |
| [12] |
Reza N., De Feria A., Wang T., et al. Left ventricular hypertrophy and hypertrophic cardiomyopathy in adult solid organ transplant recipients // Transplant Direct. 2021. Vol. 8, N 1. P. e1279. doi: 10.1097/TXD.0000000000001279 |
| [13] |
Sexton M, Westaby J, Zullo E, Sheppard MN. Fatal case of hypertrophic cardiomyopathy in a donor heart: a case report. Transplant Proc. 2022;54(10):2703–2704. doi: 10.1016/j.transproceed.2022.10.038 |
| [14] |
Sexton M., Westaby J., Zullo E., et al. Fatal case of hypertrophic cardiomyopathy in a donor heart: a case report // Transplant Proc. 2022. Vol. 54, N 10. P. 2703–2704. doi: 10.1016/j.transproceed.2022.10.038 |
| [15] |
Pollmann K, Kaltenecker E, Schleihauf J, et al. Compound mutation in cardiac sarcomere proteins is associated with increased risk for major arrhythmic events in pediatric onset hypertrophic cardiomyopathy. J Clin Med. 2021;10(22):5256. doi: 10.3390/jcm10225256. |
| [16] |
Pollmann K., Kaltenecker E., Schleihauf J., et al. Compound mutation in cardiac sarcomere proteins is associated with increased risk for major arrhythmic events in pediatric onset hypertrophic cardiomyopathy // J Clin Med. 2021. Vol. 10, N 22. P. 5256. doi: 10.3390/jcm10225256 |
| [17] |
Bick AG, Wakimoto H, Kamer KJ, et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A. 2017;114(43):E9096–E9104. doi: 10.1073/pnas.1711303114 |
| [18] |
Bick A.G., Wakimoto H., Kamer K. J., et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter // Proc Natl Acad Sci U S A. 2017. Vol. 114, N 43. P. E9096–E9104. doi: 10.1073/pnas.1711303114 |
| [19] |
Chowdhury SAK, Warren CM, Simon JN, et al. Modifications of sarcoplasmic reticulum function prevent progression of sarcomere-linked hypertrophic cardiomyopathy despite a persistent increase in myofilament calcium response. Front Physiol. 2020;11:107. doi: 10.3389/fphys.2020.00107 |
| [20] |
Chowdhury S.A.K., Warren C. M., Simon J. N., et al. Modifications of sarcoplasmic reticulum function prevent progression of sarcomere-linked hypertrophic cardiomyopathy despite a persistent increase in myofilament calcium response // Front Physiol. 2020. Vol. 11. P. 107. doi: 10.3389/fphys.2020.00107 |
| [21] |
Lombardi M, Lazzeroni D, Pisano A, et al. Mitochondrial energetics and Ca2+-activated ATPase in obstructive hypertrophic cardiomyopathy. J Clin Med. 2020;9(6):1799. doi: 10.3390/jcm9061799 |
| [22] |
Lombardi M., Lazzeroni D., Pisano A., et al. Mitochondrial energetics and Ca2+-activated atpase in obstructive hypertrophic cardiomyopathy // J Clin Med. 2020. Vol. 9, N 6. P. 1799. doi: 10.3390/jcm9061799 |
| [23] |
Cohn R, Thakar K, Lowe A, et al. A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations. Stem Cell Reports. 2019;12(1):71–83. doi: 10.1016/j.stemcr.2018.11.015 |
| [24] |
Cohn R., Thakar K., Lowe A., et al. A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations // Stem Cell Reports. 2019. Vol. 12, N 1. P. 71–83. doi: 10.1016/j.stemcr.2018.11.015 |
| [25] |
Lorenzini M, Norrish G, Field E, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers. J Am Coll Cardiol. 2020;76(5):550–559. doi: 10.1016/j.jacc.2020.06.011 |
| [26] |
Lorenzini M., Norrish G., Field E., et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers // J Am Coll Cardiol. 2020. Vol. 76, N 5. P. 550–559. doi: 10.1016/j.jacc.2020.06.011 |
| [27] |
Chou C, Chin MT. Pathogenic mechanisms of hypertrophic cardiomyopathy beyond sarcomere dysfunction. Int J Mol Sci. 2021;22(16):8933. doi: 10.3390/ijms22168933 |
| [28] |
Chou C., Chin M. T. Pathogenic mechanisms of hypertrophic cardiomyopathy beyond sarcomere dysfunction // Int J Mol Sci. 2021. Vol. 22, N 16. P. 8933. doi: 10.3390/ijms22168933 |
| [29] |
Joy G, Kelly CI, Webber M, et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy. Circulation. 2023;148(10):808–818. doi: 10.1161/CIRCULATIONAHA.123.063835 |
| [30] |
Joy G., Kelly C. I., Webber M., et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy // Circulation. 2023. Vol. 148, N 10. P. 808–818. doi: 10.1161/CIRCULATIONAHA.123.063835 |
| [31] |
Tudurachi BS, Zăvoi A, Leonte A, et al. An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy. Int J Mol Sci. 2023;24(13):10510. doi: 10.3390/ijms241310510 |
| [32] |
Tudurachi B.S., Zăvoi A., Leonte A., et al. An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy // Int J Mol Sci. 2023. Vol. 24, N 13. P. 10510. doi: 10.3390/ijms241310510 |
| [33] |
García-Vielma C, Lazalde-Córdova LG, Arzola-Hernández JC, et al. Identification of variants in genes associated with hypertrophic cardiomyopathy in Mexican patients. Mol Genet Genomics. 2023;298(6):1289–1299. doi: 10.1007/s00438-023-02048-8 Erratum in: Mol Genet Genomics. 2023;298(6):1593. doi: 10.1007/s00438-023-02069-3 |
| [34] |
García-Vielma C., Lazalde-Córdova L.G., Arzola-Hernández J.C., et al. Identification of variants in genes associated with hypertrophic cardiomyopathy in Mexican patients // Mol Genet Genomics. 2023. Vol. 298, N 6. P. 1593. doi: 10.1007/s00438-023-02048-8 Erratum in: Mol Genet Genomics. 2023. Vol. 298, N 6. P. 1289–1299. doi: 10.1007/s00438-023-02069-3 |
| [35] |
Güvenç O, Karaer K, Haydin S, et al. Implantation of cardiac defibrillator in an infant with hypertrophic cardiomyopathy and newly identified MYBP3 mutation. Turk Pediatri Ars. 2020;55(3):304–308. doi: 10.14744/TurkPediatriArs.2018.35556 |
| [36] |
Güvenç O., Karaer K., Haydin S., et al. Implantation of cardiac defibrillator in an infant with hypertrophic cardiomyopathy and newly identified MYBP3 mutation // Turk Pediatri Ars. 2020. Vol. 55, N 3. P. 304–308. doi: 10.14744/TurkPediatriArs.2018.35556 |
| [37] |
Dong Y, Li X, Fu W, et al. Generation of an iPSC line (ZZUNEUi021-A) from a hypertrophic cardiomyopathy patient with TNNT2 mutation. Stem Cell Res. 2022;58:102622. doi: 10.1016/j.scr.2021.102622 |
| [38] |
Dong Y., Li X., Fu W., et al. Generation of an iPSC line (ZZUNEUi021-A) from a hypertrophic cardiomyopathy patient with TNNT2 mutation // Stem Cell Res. 2022. Vol. 58. P. 102622. doi: 10.1016/j.scr.2021.102622 |
| [39] |
Kim H, Kim HJ, Oh J, et al. An induced pluripotent stem cell line (YCMi006-A) generated from a patient with hypertrophic cardiomyopathy who carries the ACTA1 mutation p.Ile343Met. Stem Cell Res. 2022;63:102874. doi: 10.1016/j.scr.2022.102874 |
| [40] |
Kim H., Kim H. J., Oh J., et al. An induced pluripotent stem cell line (YCMi006-A) generated from a patient with hypertrophic cardiomyopathy who carries the ACTA1 mutation p.Ile343Met // Stem Cell Res. 2022. Vol. 63. P. 102874. doi: 10.1016/j.scr.2022.102874 |
| [41] |
Zhao SR, Shen M, Lee C, et al. Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Res. 2021;57:102597. doi: 10.1016/j.scr.2021.102597 |
| [42] |
Zhao S.R., Shen M., Lee C., et al. Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations // Stem Cell Res. 2021. Vol. 57. P. 102597. doi: 10.1016/j.scr.2021.102597 |
| [43] |
Wijnker PJ, Friedrich FW, Dutsch A, et al. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue. J Mol Cell Cardiol. 2016;97:82–92. doi: 10.1016/j.yjmcc.2016.03.003 |
| [44] |
Wijnker P.J.M., Friedrich F. W., Dutsch A., et al. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue // J Mol Cell Cardiol. 2016. Vol. 97. P. 82–92. doi: 10.1016/j.yjmcc.2016.03.003 |
| [45] |
Meijering RA, Henning RH, Brundel BJ. Reviving the protein quality control system: therapeutic target for cardiac disease in the elderly. Trends Cardiovasc Med. 2015;25(3):243–247. doi: 10.1016/j.tcm.2014.10.013 |
| [46] |
Meijering R.A.M., Henning R. H., Brundel B. J. Reviving the protein quality control system: therapeutic target for cardiac disease in the elderly // Trends Cardiovasc Med. 2015. Vol. 25, N 3. P. 243–247. doi: 10.1016/j.tcm.2014.10.013 |
| [47] |
Sequeira V, Wijnker PJ, Nijenkamp LL, et al. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res. 2013;112(11):1491–505. Corrected and republished from: Circ Res. 2013;113(8):e87. doi: 10.1161/CIRCRESAHA.111.300436 |
| [48] |
Sequeira V., Wijnker P. J.M., Nijenkamp L. L., et al. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations // Circ Res. 2013. Vol. 112, N 11. P. 1491–1505. Corrected and republished from: Circ Res. 2013. Vol. 113, N 8. P. e87. doi: 10.1161/CIRCRESAHA.111.300436 |
| [49] |
Wijnker PJM, Sequeira V, Kuster DWD, Velden JV. Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits. Antioxid Redox Signal. 2019;31(4):318–358. doi: 10.1089/ars.2017.7236 |
| [50] |
Wijnker P.J.M., Sequeira V., Kuster D. W.D., Velden J. V. Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits // Antioxid Redox Signal. 2019. Vol. 31, N 4. P. 318–358. doi: 10.1089/ars.2017.7236 |
| [51] |
Witjas-Paalberends ER, Ferrara C, Scellini B, et al. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation. J Physiol. 2014;592(15):3257–3272. doi: 10.1113/jphysiol.2014.274571 |
| [52] |
Witjas-Paalberends E.R., Ferrara C., Scellini B., et al. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation // J Physiol. 2014. Vol. 592, N 15. P. 3257–3272. doi: 10.1113/jphysiol.2014.274571 |
| [53] |
Belus A, Piroddi N, Scellini B, et al. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol. 2008;586(15):3639–3644. doi: 10.1113/jphysiol.2008.155952 |
| [54] |
Belus A., Piroddi N., Scellini B., et al. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils // J Physiol. 2008. Vol. 586, N 15. P. 3639–3644. doi: 10.1113/jphysiol.2008.155952 |
| [55] |
Anmann T, Eimre M, Kuznetsov AV, et al. Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells. FEBS J. 2005;272(12):3145–3161. doi: 10.1111/j.1742-4658.2005.04734.x |
| [56] |
Anmann T., Eimre M., Kuznetsov A. V., et al. Calcium-induced contraction of sarcomeres changes the regulation of mitochondrial respiration in permeabilized cardiac cells // FEBS J. 2005. Vol. 272, N 12. P. 3145–3161. doi: 10.1111/j.1742-4658.2005.04734.x |
| [57] |
Singh SR, Kadioglu H, Patel K, et al. Is Desmin propensity to aggregate part of its protective function? Cells. 2020;9(2):491. doi: 10.3390/cells9020491 |
| [58] |
Singh S.R., Kadioglu H., Patel K., et al. Is Desmin propensity to aggregate part of its protective function? // Cells. 2020. Vol. 9, N 2. P. 491. doi: 10.3390/cells9020491 |
| [59] |
Taylor MR, Slavov D, Ku L, et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation. 2007;115(10):1244–1251. doi: 10.1161/CIRCULATIONAHA.106.646778 |
| [60] |
Taylor M.R.G., Slavov D., Ku L., et al. Prevalence of desmin mutations in dilated cardiomyopathy // Circulation. 2007. Vol. 115, N 10. P. 1244–1251. doi: 10.1161/CIRCULATIONAHA.106.646778 |
| [61] |
Li Y, Zhang W, Dai Y, Chen K. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy. Front Genet. 2022;13:986995. doi: 10.3389/fgene.2022.986995 |
| [62] |
Li Y., Zhang W., Dai Y., Chen K. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy // Front Genet. 2022. Vol. 13. P. 986995. doi: 10.3389/fgene.2022.986995 |
| [63] |
Vakrou S, Abraham MR. Hypertrophic cardiomyopathy: a heart in need of an energy bar? Front Physiol. 2014;5:309. doi: 10.3389/fphys.2014.00309 |
| [64] |
Vakrou S., Abraham M. R. Hypertrophic cardiomyopathy: a heart in need of an energy bar? // Front Physiol. 2014. Vol. 5. P. 309. doi: 10.3389/fphys.2014.00309 |
| [65] |
Brambilla A, Olivotto I, Favilli S, et al. Impact of cardiovascular involvement on the clinical course of paediatric mitochondrial disorders. Orphanet J Rare Dis. 2020;15(1):196. doi: 10.1186/s13023–020–01466-w |
| [66] |
Brambilla A., Olivotto I., Favilli S., et al. Impact of cardiovascular involvement on the clinical course of paediatric mitochondrial disorders // Orphanet J Rare Dis. 2020. Vol. 15, N 1. P. 196. doi: 10.1186/s13023–020–01466-w |
| [67] |
Gehmlich K, Dodd MS, Allwood JW, et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Biosyst. 2015;11(2):564–573. doi: 10.1039/c4mb00594e |
| [68] |
Gehmlich K., Dodd M. S., William Allwood J., et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy // Mol Biosyst. 2015. Vol. 11, N 2. P. 564–573. doi: 10.1039/c4mb00594e |
| [69] |
Chung H, Kim Y, Cho SM, et al. Differential contributions of sarcomere and mitochondria-related multigene variants to the endophenotype of hypertrophic cardiomyopathy. Mitochondrion. 2020;53:48–56. doi: 10.1016/j.mito.2020.04.010 |
| [70] |
Chung H., Kim Y., Cho S. M., et al. Differential contributions of sarcomere and mitochondria-related multigene variants to the endophenotype of hypertrophic cardiomyopathy // Mitochondrion. 2020. Vol. 53. P. 48–56. doi: 10.1016/j.mito.2020.04.010 |
| [71] |
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–224. doi: 10.1038/s41580-020-0210-7 |
| [72] |
Giacomello M., Pyakurel A., Glytsou C., Scorrano L. The cell biology of mitochondrial membrane dynamics // Nature Reviews Molecular Cell Biology. 2020. Vol. 21, N 4. P. 204–224. doi: 10.1038/s41580-020-0210-7 |
| [73] |
Frye RE, Lionnard L, Singh I, et al. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder. Transl Psychiatry. 2021;11(1):527. doi: 10.1038/s41398-021-01647-6 |
| [74] |
Frye R.E., Lionnard L., Singh I., et al. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder // Transl Psychiatry. 2021. Vol. 11, N 1. P. 527. doi: 10.1038/s41398-021-01647-6 |
| [75] |
Chiang S, Braidy N, Maleki S, et al. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol. 2021;46:102038. doi: 10.1016/j.redox.2021.102038 |
| [76] |
Chiang S., Braidy N., Maleki S., et al. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation // Redox Biol. 2021. Vol. 46. P. 102038. doi: 10.1016/j.redox.2021.102038 |
| [77] |
Tokuyama T, Yanagi S. Role of mitochondrial dynamics in heart diseases. Genes (Basel). 2023;14(10):1876. doi: 10.3390/genes14101876 |
| [78] |
Tokuyama T., Yanagi S. Role of mitochondrial dynamics in heart diseases // Genes (Basel). 2023. Vol. 14, N 10. P. 1876. doi: 10.3390/genes14101876 |
| [79] |
Hovhannisyan Y, Li Z, Callon D, et al. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther. 2024;15(1):10. doi: 10.1186/s13287-023-03619-7 |
| [80] |
Hovhannisyan Y., Li Z., Callon D., et al. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation // Stem Cell Res Ther. 2024. Vol. 15, N 1. P. 10. doi: 10.1186/s13287-023-03619-7 |
| [81] |
Vučković S, Dinani R, Nollet EE, et al. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. Stem Cell Res Ther. 2022;13(1):332. doi: 10.1186/s13287-022-03021-9 |
| [82] |
Vučković S., Dinani R., Nollet E. E., et al. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 332. doi: 10.1186/s13287-022-03021-9 |
| [83] |
Abdullah CS, Remex NS, Aishwarya R, et al. Mitochondrial dysfunction and autophagy activation are associated with cardiomyopathy developed by extended methamphetamine self-administration in rats. Redox Biol. 2022;58:102523. doi: 10.1016/j.redox.2022.102523 |
| [84] |
Abdullah C.S., Remex N. S., Aishwarya R., et al. Mitochondrial dysfunction and autophagy activation are associated with cardiomyopathy developed by extended methamphetamine self-administration in rats // Redox Biol. 2022. Vol. 58. P. 102523. doi: 10.1016/j.redox.2022.102523 |
| [85] |
Peoples JN, Saraf A, Ghazal N, et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51(12):1–13. doi: 10.1038/s12276-019-0355-7 |
| [86] |
Peoples J.N., Saraf A., Ghazal N., et al. Mitochondrial dysfunction and oxidative stress in heart disease // Exp Mol Med. 2019. Vol. 51, N 12. P. 1–13. doi: 10.1038/s12276-019-0355-7 |
| [87] |
Zhi F, Zhang Q, Liu L, et al. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments. Cell Stress Chaperones. 2023;28(6):641–655. doi: 10.1007/s12192-023-01361-w |
| [88] |
Zhi F., Zhang Q., Liu L., et al. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments // Cell Stress Chaperones. 2023. Vol. 28, N 6. P. 641–655. doi: 10.1007/s12192-023-01361-w |
| [89] |
Friederich MW, Geddes GC, Wortmann SB, et al. Pathogenic variants in MRPL44 cause infantile cardiomyopathy due to a mitochondrial translation defect. Mol Genet Metab. 2021;133(4):362–371. doi: 10.1016/j.ymgme.2021.06.001 |
| [90] |
Friederich M.W., Geddes G. C., Wortmann S. B., et al. Pathogenic variants in MRPL44 cause infantile cardiomyopathy due to a mitochondrial translation defect // Mol Genet Metab. 2021. Vol. 133, N 4. P. 362–371. doi: 10.1016/j.ymgme.2021.06.001 |
| [91] |
Li S, Pan H, Tan C, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Reports. 2018;10(3):808–821. doi: 10.1016/j.stemcr.2018.01.013 |
| [92] |
Li S., Pan H., Tan C., et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation // Stem Cell Reports. 2018. Vol. 10, N 3. P. 808–821. doi: 10.1016/j.stemcr.2018.01.013 |
| [93] |
Sharma S, Bhattarai S, Ara H, et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol. 2020;37:101740. doi: 10.1016/j.redox.2020.101740 |
| [94] |
Sharma S., Bhattarai S., Ara H., et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy // Redox Biol. 2020. Vol. 37. P. 101740. doi: 10.1016/j.redox.2020.101740 |
| [95] |
Alam S, Abdullah CS, Aishwarya R, et al. Dysfunctional mitochondrial dynamic and oxidative phosphorylation precedes cardiac dysfunction in R120G-αB-crystallin-induced desmin-related cardiomyopathy. J Am Heart Assoc. 2020;9(23):e017195. doi: 10.1161/JAHA.120.017195 |
| [96] |
Alam S., Abdullah C. S., Aishwarya R., et al. Dysfunctional mitochondrial dynamic and oxidative phosphorylation precedes cardiac dysfunction in R120G-αB-crystallin-induced desmin-related cardiomyopathy // J Am Heart Assoc. 2020. Vol. 9, N 23. P. e017195. doi: 10.1161/JAHA.120.017195 |
| [97] |
Ranjbarvaziri S, Kooiker KB, Ellenberger M, et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation. 2021;144(21):1714–1731. doi: 10.1161/CIRCULATIONAHA.121.053575 |
| [98] |
Ranjbarvaziri S., Kooiker K. B., Ellenberger M., et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy // Circulation. 2021. Vol. 144, N 21. P. 1714–1731. doi: 10.1161/CIRCULATIONAHA.121.053575 |
| [99] |
Shimada BK, Boyman L, Huang W, et al. Pyruvate-driven oxidative phosphorylation is downregulated in sepsis-induced cardiomyopathy: a study of mitochondrial proteome. Shock. 2022;57(4):553–564. doi: 10.1097/SHK.0000000000001858 |
| [100] |
Shimada B.K., Boyman L., Huang W., et al. Pyruvate-driven oxidative phosphorylation is downregulated in sepsis-induced cardiomyopathy: a study of mitochondrial proteome // Shock. 2022. Vol. 57, N 4. P. 553–564. doi: 10.1097/SHK.0000000000001858 |
| [101] |
Maltês S, Lopes LR. New perspectives in the pharmacological treatment of hypertrophic cardiomyopathy. Novas perspetivas no tratamento farmacológico da miocardiopatia hipertrófica. Rev Port Cardiol (Engl Ed). 2020;39(2):99–109. doi: 10.1016/j.repc.2019.03.008 |
| [102] |
Maltês S., Lopes L. R. Novas perspetivas no tratamento farmacológico da miocardiopatia hipertrófica // Rev Port Cardiol (Engl Ed). 2020. Vol. 39, N 2. P. 99–109. doi: 10.1016/j.repc.2019.03.008 |
| [103] |
Kuan SW, Chua KH, Tan EW, et al. Whole mitochondrial genome sequencing of Malaysian patients with cardiomyopathy. PeerJ. 2022;10:e13265. doi: 10.7717/peerj.13265 |
| [104] |
Kuan S.W., Chua K. H., Tan E. W., et al. Whole mitochondrial genome sequencing of Malaysian patients with cardiomyopathy // PeerJ. 2022. Vol. 10. P. e13265. doi: 10.7717/peerj.13265 |
| [105] |
Ding Y, Gao B, Huang J. Mitochondrial cardiomyopathy: the roles of mt-tRNA mutations. J Clin Med. 2022;11(21):6431. doi: 10.3390/jcm11216431 |
| [106] |
Ding Y., Gao B., Huang J. Mitochondrial cardiomyopathy: the roles of mt-tRNA mutations // J Clin Med. 2022. Vol. 11, N 21. P. 6431. doi: 10.3390/jcm11216431 |
| [107] |
Solomon T, Filipovska A, Hool L, Viola H. Preventative therapeutic approaches for hypertrophic cardiomyopathy. J Physiol. 2021;599(14):3495–3512. doi: 10.1113/JP279410 |
| [108] |
Solomon T., Filipovska A., Hool L., Viola H. Preventative therapeutic approaches for hypertrophic cardiomyopathy // J Physiol. 2021. Vol. 599, N 14. P. 3495–3512. doi: 10.1113/JP279410 |
| [109] |
Wu B, Li J, Ni H, et al. TLR4 activation promotes the progression of experimental autoimmune myocarditis to dilated cardiomyopathy by inducing mitochondrial dynamic imbalance. Oxid Med Cell Longev. 2018;2018:3181278. doi: 10.1155/2018/3181278 |
| [110] |
Wu B., Li J., Ni H., et al. TLR4 Activation promotes the progression of experimental autoimmune myocarditis to dilated cardiomyopathy by inducing mitochondrial dynamic imbalance // Oxid Med Cell Longev. 2018. Vol. 2018. P. 3181278. doi: 10.1155/2018/3181278 |
| [111] |
Kang C, Badr MA, Kyrychenko V, et al. Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovasc Res. 2018;114(1):90–102. doi: 10.1093/cvr/cvx201 |
| [112] |
Kang C., Badr M. A., Kyrychenko V., et al. Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy // Cardiovasc Res. 2018. Vol. 114, N 1. P. 90–102. doi: 10.1093/cvr/cvx201 |
| [113] |
Andres AM, Tucker KC, Thomas A, et al. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2017;2(4):e89303. doi: 10.1172/jci.insight.89303 |
| [114] |
Andres A.M., Tucker K. C., Thomas A., et al. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass // JCI Insight. 2017. Vol. 2, N 4. P. e89303. doi: 10.1172/jci.insight.89303 |
| [115] |
Hsiao YT, Shimizu I, Wakasugi T, et al. Cardiac mitofusin-1 is reduced in non-responding patients with idiopathic dilated cardiomyopathy. Sci Rep. 2021;11(1):6722. doi: 10.1038/s41598-021-86209-y |
| [116] |
Hsiao Y.T., Shimizu I., Wakasugi T., et al. Cardiac mitofusin-1 is reduced in non-responding patients with idiopathic dilated cardiomyopathy // Sci Rep. 2021. Vol. 11, N 1. P. 6722. doi: 10.1038/s41598-021-86209-y |
| [117] |
Chen H, Ren S, Clish C, et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J Cell Biol. 2015;211(4):795–805. doi: 10.1083/jcb.201507035 |
| [118] |
Chen H., Ren S., Clish C., et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy // J Cell Biol. 2015. Vol. 211, N 4. P. 795–805. doi: 10.1083/jcb.201507035 |
| [119] |
Spiegel R, Saada A, Flannery PJ, et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet. 2016;53(2):127–131. doi: 10.1136/jmedgenet-2015-103361 |
| [120] |
Spiegel R., Saada A., Flannery P. J., et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation // J Med Genet. 2016. Vol. 53, N 2. P. 127–131. doi: 10.1136/jmedgenet-2015-103361 |
| [121] |
Zhuang Q, Guo F, Fu L, et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy. J Clin Invest. 2023;133(14):e164660. doi: 10.1172/JCI164660 |
| [122] |
Zhuang Q., Guo F., Fu L., et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy // J Clin Invest. 2023. Vol. 133, N 14. P. e164660. doi: 10.1172/JCI164660 |
| [123] |
AlTamimi JZ, AlFaris NA, Alshammari GM, et al. The protective effect of 11-Keto-β-boswellic acid against diabetic cardiomyopathy in rats entails activation of AMPK. Nutrients. 2023;15(7):1660. doi: 10.3390/nu15071660 |
| [124] |
AlTamimi J.Z., AlFaris N.A., Alshammari G. M., et al. The protective effect of 11-Keto-β-boswellic acid against diabetic cardiomyopathy in rats entails activation of AMPK // Nutrients. 2023. Vol. 15, N 7. P. 1660. doi: 10.3390/nu15071660 |
| [125] |
Albasher G, Alkahtani S, Al-Harbi LN. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1. Saudi J Biol Sci. 2022;29(2):1210–1220. doi: 10.1016/j.sjbs.2021.09.045 |
| [126] |
Albasher G., Alkahtani S., Al-Harbi L. N. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1 // Saudi J Biol Sci. 2022. Vol. 29, N 2. P. 1210–1220. doi: 10.1016/j.sjbs.2021.09.045 |
| [127] |
Viola HM, Hool LC. Impaired calcium handling and mitochondrial metabolic dysfunction as early markers of hypertrophic cardiomyopathy. Arch Biochem Biophys. 2019;665:166–174. doi: 10.1016/j.abb.2019.03.006 |
| [128] |
Viola H.M., Hool L. C. Impaired calcium handling and mitochondrial metabolic dysfunction as early markers of hypertrophic cardiomyopathy // Arch Biochem Biophys. 2019. Vol. 665, P. 166–174. doi: 10.1016/j.abb.2019.03.006 |
| [129] |
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial dysfunction in intensive care unit-acquired weakness and critical illness myopathy: a narrative review. Int J Mol Sci. 2023;24(6):5516. doi: 10.3390/ijms24065516 |
| [130] |
Klawitter F., Ehler J., Bajorat R., et al. Mitochondrial dysfunction in intensive care unit-acquired weakness and critical illness myopathy: a narrative review // Int J Mol Sci. 2023. Vol. 24, N 6. P. 5516. doi: 10.3390/ijms24065516 |
| [131] |
Moore J, Ewoldt J, Venturini G, et al. Multi-omics profiling of hypertrophic cardiomyopathy reveals altered mechanisms in mitochondrial dynamics and excitation-contraction coupling. Int J Mol Sci. 2023;24(5):4724. doi: 10.3390/ijms24054724 |
| [132] |
Moore J., Ewoldt J., Venturini G., et al. Multi-omics profiling of hypertrophic cardiomyopathy reveals altered mechanisms in mitochondrial dynamics and excitation-contraction coupling // Int J Mol Sci. 2023. Vol. 24, N 5. P. 4724. doi: 10.3390/ijms24054724 |
| [133] |
Tolstik TV, Kirichenko TV, Bogatyreva AI, et al. The role of mitochondrial dysfunction in the pathogenesis of inflammatory diseases. Journal of Atherosclerosis and Dyslipidemias. 2023;(3):10–17. EDN: PBLRHI doi: 10.34687/2219–8202.JAD.2023.03.0002 |
| [134] |
Толстик Т.В., Кириченко Т. В., Богатырева А. И., и др. Роль дисфункции митохондрий в патогенезе воспалительных заболеваний и атеросклероза // Атеросклероз и дислипидемии. 2023. № 52. Р. 10–17. EDN: PBLRHI doi: 10.34687/2219-8202.JAD.2023.03.0002 |
| [135] |
Ma KY, Fokkens MR, Reggiori F, et al. Parkinson’s disease-associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Transl Neurodegener. 2021;10(1):19. doi: 10.1186/s40035-021-00243-4 |
| [136] |
Ma K.Y., Fokkens M. R., Reggiori F., et al. Parkinson’s disease-associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy // Transl Neurodegener. 2021. Vol. 10, N 1. P. 19. doi: 10.1186/s40035-021-00243-4 |
| [137] |
Xu Y, Li Y. Regulatory effect of PINK1/Parkin axis on mitophagy in isoniazide-induced hepatocellular injury. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022;47(9):1200–1207. doi: 10.11817/j.issn.1672-7347.2022.210407 |
| [138] |
Xu Y., Li Y. Regulatory effect of PINK1/Parkin axis on mitophagy in isoniazide-induced hepatocellular injury // Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022. Vol. 47, N 9. P. 1200–1207. doi: 10.11817/j.issn.1672–7347.2022.210407 |
| [139] |
Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–766. doi: 10.7150/thno.79876 |
| [140] |
Lu Y., Li Z., Zhang S., et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation // Theranostics. 2023. Vol. 13, N 2. P. 736–766. doi: 10.7150/thno.79876 |
| [141] |
Liu X, Ye B, Miller S, et al. Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. Mol Cell Biol. 2012;32(21):4493–4504. doi: 10.1128/MCB.01092–12 |
| [142] |
Liu X., Ye B., Miller S., et al. Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy // Mol Cell Biol. 2012. Vol. 32, N 21. P. 4493–4504. doi: 10.1128/MCB.01092–12 |
| [143] |
Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 2024;34(2):150–160. doi: 10.1016/j.tcb.2023.06.002 |
| [144] |
Ahola S., Langer T. Ferroptosis in mitochondrial cardiomyopathy // Trends Cell Biol. 2024. Vol. 34, N 2. P. 150–160. doi: 10.1016/j.tcb.2023.06.002 |
| [145] |
Lin LF, Jhao YT, Chiu CH, et al. Bezafibrate exerts neuroprotective effects in a rat model of sporadic Alzheimer’s disease. Pharmaceuticals (Basel). 2022;15(2):109. doi: 10.3390/ph15020109 |
| [146] |
Lin L.F., Jhao Y.T., Chiu C. H. et al. Bezafibrate exerts neuroprotective effects in a rat model of sporadic Alzheimer’s disease // Pharmaceuticals (Basel). 2022. Vol. 15, N 2. P. 109. doi: 10.3390/ph15020109 |
| [147] |
Lyu J, Zhao Y, Zhang N, et al. Bezafibrate rescues mitochondrial encephalopathy in mice via induction of daily torpor and hypometabolic state. Neurotherapeutics. 2022;19(3):994–1006. doi: 10.1007/s13311-022-01216-9 |
| [148] |
Lyu J., Zhao Y., Zhang N., et al. Bezafibrate rescues mitochondrial encephalopathy in mice via induction of daily torpor and hypometabolic state // Neurotherapeutics. 2022. Vol. 19, N 3. P. 994–1006. doi: 10.1007/s13311-022-01216-9 |
| [149] |
Grings M, Moura AP, Parmeggiani B, et al. Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2135–2148. doi: 10.1016/j.bbadis.2017.05.019 |
| [150] |
Grings M., Moura A. P., Parmeggiani B., et al. Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency // Biochim Biophys Acta Mol Basis Dis. 2017. Vol. 1863, N 9. P. 2135–2148. doi: 10.1016/j.bbadis.2017.05.019 |
| [151] |
Zingerman B, Ziv D, Feder Krengel N, et al. Cessation of Bezafibrate in patients with chronic kidney disease improves renal function. Sci Rep. 2020;10(1):19768. doi: 10.1038/s41598-020-76861-1 |
| [152] |
Zingerman B., Ziv D., Feder Krengel N., et al. Cessation of Bezafibrate in patients with chronic kidney disease improves renal function // Sci Rep. 2020. Vol. 10, N 1. P. 19768. doi: 10.1038/s41598-020-76861-1 |
| [153] |
Suyama T, Shimura M, Fushimi T, et al. Efficacy of Bezafibrate in two patients with mitochondrial trifunctional protein deficiency. Mol Genet Metab Rep. 2020;24:100610. doi: 10.1016/j.ymgmr.2020.100610 |
| [154] |
Suyama T., Shimura M., Fushimi T., et al. Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency // Mol Genet Metab Rep. 2020. Vol. 24. P. 100610. doi: 10.1016/j.ymgmr.2020.100610 |
| [155] |
Kawakami R, Matsui H, Matsui M, et al. Empagliflozin induces the transcriptional program for nutrient homeostasis in skeletal muscle in normal mice. Sci Rep. 2023;13(1):18025. doi: 10.1038/s41598-023-45390-y |
| [156] |
Kawakami R., Matsui H., Matsui M., et al. Empagliflozin induces the transcriptional program for nutrient homeostasis in skeletal muscle in normal mice // Sci Rep. 2023. Vol. 13, N 1. P. 18025. doi: 10.1038/s41598-023-45390-y |
| [157] |
Haileselassie B, Mukherjee R, Joshi AU, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol. 2019;130:160–169. doi: 10.1016/j.yjmcc.2019.04.006 Erratum in: J Mol Cell Cardiol. 2024;187:120. doi: 10.1016/j.yjmcc.2023.11.004 |
| [158] |
Haileselassie B., Mukherjee R., Joshi A. U., et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy // J Mol Cell Cardiol. 2019. Vol. 130. P. 160–169. doi: 10.1016/j.yjmcc.2019.04.006 Erratum in: J Mol Cell Cardiol. 2024. Vol. 187. P. 120. doi: 10.1016/j.yjmcc.2023.11.004 |
| [159] |
Nhu NT, Li Q, Liu Y, et al. Effects of Mdivi-1 on neural mitochondrial dysfunction and mitochondria-mediated apoptosis in ischemia-reperfusion injury after stroke: a systematic review of preclinical studies. Front Mol Neurosci. 2021;14:778569. doi: 10.3389/fnmol.2021.778569 |
| [160] |
Nhu N.T., Li Q., Liu Y., et al. Effects of Mdivi-1 on neural mitochondrial dysfunction and mitochondria-mediated apoptosis in ischemia-reperfusion injury after stroke: a systematic review of preclinical studies // Front Mol Neurosci. 2021. Vol. 14. P. 778569. doi: 10.3389/fnmol.2021.778569 |
| [161] |
Chen Y, Li S, Guo Y, et al. Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction. Oxid Med Cell Longev. 2020. Vol. 2020. P. 4629189. doi: 10.1155/2020/4629189 Erratum in: Oxid Med Cell Longev. 2021;2021:9796134. doi: 10.1155/2021/9796134 |
| [162] |
Chen Y., Li S., Guo Y., et al. Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction // Oxid Med Cell Longev. 2020. Vol. 2020. P. 4629189. doi: 10.1155/2020/4629189 Erratum in: Oxid Med Cell Longev. 2021. Vol. 2021. P. 9796134. doi: 10.1155/2021/9796134 |
| [163] |
Osgerby L, Lai YC, Thornton PJ, et al. Kinetin riboside and its ProTides activate the Parkinson’s disease associated PTEN-induced putative kinase 1 (PINK1) independent of mitochondrial depolarization. J Med Chem. 2017;60(8):3518–3524. doi: 10.1021/acs.jmedchem.6b01897 |
| [164] |
Osgerby L., Lai Y. C., Thornton P. J., et al. Kinetin riboside and Its ProTides activate the Parkinson’s disease associated PTEN-induced putative kinase 1 (PINK1) independent of mitochondrial depolarization // J Med Chem. 2017. Vol. 60, N 8. P. 3518–3524. doi: 10.1021/acs.jmedchem.6b01897 |
| [165] |
Borah JC, Mujtaba S, Karakikes I, et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol. 2011;18(4):531–541. doi: 10.1016/j.chembiol.2010.12.021 |
| [166] |
Borah J.C., Mujtaba S., Karakikes I., et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes // Chem Biol. 2011. Vol. 18, N 4. P. 531–541. doi: 10.1016/j.chembiol.2010.12.021 |
| [167] |
Adisa RA, Sulaimon LA, Okeke EG, et al. Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems. Toxicol Res. 2021;38(3):275–291. doi: 10.1007/s43188-021-00105-1 |
| [168] |
Adisa R.A., Sulaimon L. A., Okeke E. G., et al. Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems // Toxicol Res. 2021. Vol. 38, N 3. P. 275–291. doi: 10.1007/s43188-021-00105-1 |
| [169] |
Russo S, De Rasmo D, Signorile A, et al. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice. Sci Rep. 2022;12(1):19847. doi: 10.1038/s41598-022-24231-4 |
| [170] |
Russo S., De Rasmo D., Signorile A., et al. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice // Sci Rep. 2022. Vol. 12, N 1. P. 19847. doi: 10.1038/s41598-022-24231-4 |
| [171] |
Vockley J. Long-chain fatty acid oxidation disorders and current management strategies. Am J Manag Care. 2020;26(7 Suppl.): S147-S154. doi: 10.37765/ajmc.2020.88480 |
| [172] |
Vockley J. Long-chain fatty acid oxidation disorders and current management strategies // Am J Manag Care. 2020. Vol. 26 (Suppl 7). P. S147–S154. doi: 10.37765/ajmc.2020.88480 |
| [173] |
Wang J, Huang X, Liu H, et al. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxid Med Cell Longev. 2022;2022:1122494. doi: 10.1155/2022/1122494 |
| [174] |
Wang J., Huang X., Liu H., et al. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function // Oxid Med Cell Longev. 2022. Vol. 2022. P. 1122494. doi: 10.1155/2022/1122494 |
| [175] |
Zhou J, Pang J, Tripathi M, et al. Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression. Nat Commun. 2022;13(1):5202. doi: 10.1038/s41467-022-32788-x |
| [176] |
Zhou J., Pang J., Tripathi M., et al. Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression // Nat Commun. 2022. Vol. 13, N 1. P. 5202. doi: 10.1038/s41467-022-32788-x |
| [177] |
Messerer J, Wrede C, Schipke J, et al. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice. J Anat. 2023;242(1):91–101. doi: 10.1111/joa.13618 |
| [178] |
Messerer J., Wrede C., Schipke J., et al. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice // J Anat. 2023. Vol. 242. P. 91–101. doi: 10.1111/joa.13618 |
| [179] |
Chai N, Zheng H, Zhang H, et al. Spermidine alleviates intrauterine hypoxia-induced offspring newborn myocardial mitochondrial damage in rats by inhibiting oxidative stress and regulating mitochondrial quality control. Iran J Pharm Res. 2023;21(1):e133776. doi: 10.5812/ijpr-133776 |
| [180] |
Chai N., Zheng H., Zhang H., et al. Spermidine alleviates intrauterine hypoxia-induced offspring newborn myocardial mitochondrial damage in rats by inhibiting oxidative stress and regulating mitochondrial quality control // Iran J Pharm Res. 2023. Vol. 21, N 1. P. e133776. doi: 10.5812/ijpr-133776 |
| [181] |
Omar EM, Omar RS, Shoela MS, El Sayed NS. A study of the cardioprotective effect of spermidine: a novel inducer of autophagy. Chin J Physiol. 2021;64(6):281–288. doi: 10.4103/cjp.cjp_76_21 |
| [182] |
Omar E., Omar R., Shoela M., et al. A study of the cardioprotective effect of spermidine: a novel inducer of autophagy // Chin J Physiol. 2021. Vol. 64. N 6. P. 281–288. doi: 10.4103/cjp.cjp_76_21 |
| [183] |
Yan J, Yan JY, Wang YX, et al. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol. 2019;176(17):3126–3142. doi: 10.1111/bph.14706 |
| [184] |
Yan J., Yan J. Y., Wang Y. X., et al. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway // Br J Pharmacol. 2019. Vol. 176, N 17. P. 3126–3142. doi: 10.1111/bph.14706 |
| [185] |
Eisenberg T, Abdellatif M, Zimmermann A, et al. Dietary spermidine for lowering high blood pressure. Autophagy. 2017;13(4):767–769. doi: 10.1080/15548627.2017.1280225 |
| [186] |
Eisenberg T., Abdellatif M., Zimmermann A., et al. Dietary spermidine for lowering high blood pressure // Autophagy. 2017. Vol. 13, N 4. P. 767–769. doi: 10.1080/15548627.2017.1280225 |
| [187] |
Liu S, Huang T, Liu R, et al. Spermidine suppresses development of experimental abdominal aortic aneurysms. J Am Heart Assoc. 2020;9(8):e014757. doi: 10.1161/JAHA.119.014757 |
| [188] |
Liu S., Huang T., Liu R., et al. Spermidine suppresses development of experimental abdominal aortic aneurysms // J Am Heart Assoc. 2020. Vol. 9, N 8. P. e014757. doi: 10.1161/JAHA.119.014757 |
| [189] |
Mosqueira D, Mannhardt I, Bhagwan JR, et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J. 2018;39(43):3879–3892. doi: 10.1093/eurheartj/ehy249 |
| [190] |
Mosqueira D., Mannhardt I., Bhagwan J. R., et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy // Eur Heart J. 2018. Vol. 39, N 43. P. 3879–3892. doi: 10.1093/eurheartj/ehy249 |
| [191] |
Liu L, Zhu J, Chen H, Hong L, Jiang J. Rediscovering the value of exercise in patients with hypertrophic cardiomyopathy. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022;51(6):758–764. doi: 10.3724/zdxbyxb-2022-0323 |
| [192] |
Liu L., Zhu J., Chen H., et al. Rediscovering the value of exercise in patients with hypertrophic cardiomyopathy // Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022. Vol. 51, N 6. P. 758–764. doi: 10.3724/zdxbyxb-2022-0323 |
| [193] |
Gusdon AM, Callio J, Distefano G, et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol. 2017;90:1–13. doi: 10.1016/j.exger.2017.01.013 |
| [194] |
Gusdon A.M., Callio J., Distefano G., et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice // Exp Gerontol. 2017. Vol. 90. P. 1–13. doi: 10.1016/j.exger.2017.01.013 |
| [195] |
Pang R, Wang X, Pei F, et al. Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice. J Alzheimers Dis. 2019;72(1):83–96. doi: 10.3233/JAD-190328 |
| [196] |
Pang R., Wang X., Pei F., et al. Regular exercise enhances cognitive function and intracephalic GLUT expression in Alzheimer’s disease model mice // J Alzheimers Dis. 2019. Vol. 72, N 1. P. 83–96. doi: 10.3233/JAD-190328 |
| [197] |
Pires RA, Correia TML, Almeida AA, et al. Time-course of redox status, redox-related, and mitochondrial-dynamics-related gene expression after an acute bout of different physical exercise protocols. Life (Basel). 2022;12(12):2113. doi: 10.3390/life12122113 |
| [198] |
Pires R.A., Correia T. M.L., Almeida A. A., et al. Time-course of redox status, redox-related, and mitochondrial-dynamics-related gene expression after an acute bout of different physical exercise protocols // Life (Basel). 2022. Vol. 12, N 12. P. 2113. doi: 10.3390/life12122113 |
Eco-Vector
/
| 〈 |
|
〉 |