Organization of the basement membranes in the choroid plexus villi of the human brain

Olga V. Kirik , Olga S. Alekseeva , Igor P. Grigorev , Elena A. Fedorova , Anastasiia A. Beketova , Dmitrii E. Korzhevskii

Morphology ›› 2024, Vol. 162 ›› Issue (1) : 54 -62.

PDF (1066KB)
Morphology ›› 2024, Vol. 162 ›› Issue (1) : 54 -62. DOI: 10.17816/morph.630499
Original Study Articles
research-article

Organization of the basement membranes in the choroid plexus villi of the human brain

Author information +
History +
PDF (1066KB)

Abstract

BACKGROUND: The choroid plexus of the brain is the source of cerebrospinal fluid and a major component of the blood–cerebrospinal fluid barrier, providing active transport of only essential substances and preventing the entry of harmful substances, including proinflammatory molecules, pathogens, and toxins. Basement membranes of the choroid plexus play a special role in the implementation of barrier functions, which underlie the choroidal epithelium and capillary endothelium, and serve as an additional filter for substances penetrating from the blood into the cerebrospinal fluid. The morphological organization of basement membranes in the villi of the human choroid plexus has not been examined extensively.

AIM: to analyze the organization of basement membranes in the villi of the human telencephalon choroid plexus by immunohistochemical detection of type IV collagen.

MATERIALS AND METHODS: The study was performed on archival materials from the choroid plexus of the human brain (n=10; age 29–50 years) using immunohistochemical methods for detecting type IV collagen.

RESULTS: An immunohistochemical reaction using antibodies to type IV collagen showed the distribution of this protein in the subepithelial area and stroma of the choroid plexus villi. All immunopositive structures had clear contours. No reaction in the cell cytoplasm or a nonspecific background was noted. Contacts of subepithelial and subcapillary basement membranes labeled with antibodies to type IV collagen were not detected.

CONCLUSION: The results showed different organization of the basement membranes of the villi of the choroid plexus of the human brain in the subepithelial and perivascular areas. In this case, the subepithelial and perivascular components containing type IV collagen did not merge.

Keywords

choroid plexus / brain / type IV collagen / human

Cite this article

Download citation ▾
Olga V. Kirik, Olga S. Alekseeva, Igor P. Grigorev, Elena A. Fedorova, Anastasiia A. Beketova, Dmitrii E. Korzhevskii. Organization of the basement membranes in the choroid plexus villi of the human brain. Morphology, 2024, 162(1): 54-62 DOI:10.17816/morph.630499

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Korzhevskii DE. The cerebral vascular plexus and the organisation of the haematoliquor barrier in humans. Regional blood circulation and microcirculation. 2003;2(1):5–14. (In Russ.). EDN: PCBHFJ

[2]

Коржевский Д.Э. Сосудистое сплетение головного мозга и организация гематоликворного барьера у человека // Регионарное кровообращение и микроциркуляция. 2003. Т. 2, № 1. С. 5–14. EDN: PCBHFJ

[3]

Korzhevskii DE. The cerebral vascular plexus and the organisation of the haematoliquor barrier in humans. Regional blood circulation and microcirculation. 2003;2(1):5–14. (In Russ.). EDN: PCBHFJ

[4]

Kaur C, Rathnasamy G, Ling EA. The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol. 2016;75(3):198–213. doi: 10.1093/jnen/nlv030

[5]

Kaur C., Rathnasamy G., Ling E.A. The choroid plexus in healthy and diseased brain // J Neuropathol Exp Neurol. 2016. Vol. 75, N 3. P. 198–213. doi: 10.1093/jnen/nlv030

[6]

Kaur C, Rathnasamy G, Ling EA. The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol. 2016;75(3):198–213. doi: 10.1093/jnen/nlv030

[7]

Serot JM, Foliguet B, Béné MC, Faure GC. Choroid plexus and ageing in rats: A morphometric and ultrastructural study. Eur J Neurosci. 2001;14(5):794–798. doi: 10.1046/j.0953-816x.2001.01693.x

[8]

Serot J.M., Foliguet B., Béné M.C., Faure G.C. Choroid plexus and ageing in rats: A morphometric and ultrastructural study // Eur J Neurosci. 2001. Vol. 14, N 5. P. 794–798. doi: 10.1046/j.0953-816x.2001.01693.x

[9]

Serot JM, Foliguet B, Béné MC, Faure GC. Choroid plexus and ageing in rats: A morphometric and ultrastructural study. Eur J Neurosci. 2001;14(5):794–798. doi: 10.1046/j.0953-816x.2001.01693.x

[10]

Chen CP, Chen RL, Preston JE. The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol. 2012;47(4):323–328. doi: 10.1016/j.exger.2012.01.008

[11]

Chen C.P., Chen R.L., Preston J.E. The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma // Exp Gerontol. 2012. Vol. 47, N 4. P. 323–328. doi: 10.1016/j.exger.2012.01.008

[12]

Chen CP, Chen RL, Preston JE. The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol. 2012;47(4):323–328. doi: 10.1016/j.exger.2012.01.008

[13]

Redzic ZB, Preston JE, Duncan JA, et al. The choroid plexus-cerebrospinal fluid system: From development to aging. Curr Top Dev Biol. 2005;71:1–52. doi: 10.1016/S0070-2153(05)71001-2

[14]

Redzic Z.B., Preston J.E., Duncan J.A., et al. The choroid plexus-cerebrospinal fluid system: From development to aging // Curr Top Dev Biol. 2005. Vol. 71. P. 1–52. doi: 10.1016/S0070-2153(05)71001-2

[15]

Redzic ZB, Preston JE, Duncan JA, et al. The choroid plexus-cerebrospinal fluid system: From development to aging. Curr Top Dev Biol. 2005;71:1–52. doi: 10.1016/S0070-2153(05)71001-2

[16]

Silverberg GD, Heit G, Huhn S, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2001;57(10):1763–1766. doi: 10.1212/wnl.57.10.1763

[17]

Silverberg G.D., Heit G., Huhn S., et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type // Neurology. 2001. Vol. 57, N 10. P. 1763–1766. doi: 10.1212/wnl.57.10.1763

[18]

Silverberg GD, Heit G, Huhn S, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2001;57(10):1763–1766. doi: 10.1212/wnl.57.10.1763

[19]

Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7):1619–1628. doi: 10.1242/dev.01037

[20]

Pöschl E., Schlötzer-Schrehardt U., Brachvogel B., et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development // Development. 2004. Vol. 131, N 7. P. 1619–1628. doi: 10.1242/dev.01037

[21]

Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7):1619–1628. doi: 10.1242/dev.01037

[22]

Sufieva DA, Fedorova EA, Yakovlev VS, et al. 25-Year storage of human choroid plexus in methyl salicylate preserves its antigen immunoreactivity. Turk Patoloji Derg. 2023;39(2):109–116. doi: 10.5146/tjpath.2022.01581

[23]

Sufieva D.A., Fedorova E.A., Yakovlev V.S., et al. 25-Year storage of human choroid plexus in methyl salicylate preserves its antigen immunoreactivity // Turk Patoloji Derg. 2023. Vol. 39, N 2. P. 109–116. doi: 10.5146/tjpath.2022.01581

[24]

Sufieva DA, Fedorova EA, Yakovlev VS, et al. 25-Year storage of human choroid plexus in methyl salicylate preserves its antigen immunoreactivity. Turk Patoloji Derg. 2023;39(2):109–116. doi: 10.5146/tjpath.2022.01581

[25]

Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017;57–58:12–28. doi: 10.1016/j.matbio.2016.08.006

[26]

Randles M.J., Humphries M.J., Lennon R. Proteomic definitions of basement membrane composition in health and disease // Matrix Biol. 2017. Vol. 57–58. P. 12–28. doi: 10.1016/j.matbio.2016.08.006

[27]

Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017;57–58:12–28. doi: 10.1016/j.matbio.2016.08.006

[28]

Goodwin PC, Johnson B, Frevert CW. Microscopy, immuno-histochemistry, digital imaging, and quantitative microscopy. In: Treuting PM, Dintzis SM, Montine KS, eds. Comparative anatomy and histology. London: Academic Press; 2017. P. 53–66. doi: 10.1016/b978-0-12-802900-8.00004-x

[29]

Goodwin P.C., Johnson B., Frevert C.W. Microscopy, immuno-histochemistry, digital imaging, and quantitative microscopy // Treuting P.M., Dintzis S.M., Montine K.S., eds. Comparative anatomy and histology. London: Academic Press, 2017. P. 53–66. doi: 10.1016/b978-0-12-802900-8.00004-x

[30]

Goodwin PC, Johnson B, Frevert CW. Microscopy, immuno-histochemistry, digital imaging, and quantitative microscopy. In: Treuting PM, Dintzis SM, Montine KS, eds. Comparative anatomy and histology. London: Academic Press; 2017. P. 53–66. doi: 10.1016/b978-0-12-802900-8.00004-x

[31]

Krenacs L, Krenacs T, Stelkovics E, Raffeld M. Heat-induced antigen retrieval for immunohistochemical reactions in routinely processed paraffin sections. Methods Mol Biol. 2010;588:103–119. doi: 10.1007/978-1-59745-324-0_14

[32]

Krenacs L., Krenacs T., Stelkovics E., Raffeld M. Heat-induced antigen retrieval for immunohistochemical reactions in routinely processed paraffin sections // Methods Mol Biol. 2010. Vol. 588. P. 103–119. doi: 10.1007/978-1-59745-324-0_14

[33]

Krenacs L, Krenacs T, Stelkovics E, Raffeld M. Heat-induced antigen retrieval for immunohistochemical reactions in routinely processed paraffin sections. Methods Mol Biol. 2010;588:103–119. doi: 10.1007/978-1-59745-324-0_14

[34]

Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des. 2009;15(12):1277–1294. doi: 10.2174/138161209787846766

[35]

Yurchenco P.D., Patton B.L. Developmental and pathogenic mechanisms of basement membrane assembly // Curr Pharm Des. 2009. Vol. 15, N 12. P. 1277–1294. doi: 10.2174/138161209787846766

[36]

Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des. 2009;15(12):1277–1294. doi: 10.2174/138161209787846766

[37]

Erickson AC, Couchman JR. Still more complexity in mammalian basement membranes. J Histochem Cytochem. 2000;48(10):1291–1306. doi: 10.1177/002215540004801001

[38]

Erickson A.C., Couchman J.R. Still more complexity in mammalian basement membranes // J Histochem Cytochem. 2000. Vol. 48, N 10. P. 1291–1306. doi: 10.1177/002215540004801001

[39]

Erickson AC, Couchman JR. Still more complexity in mammalian basement membranes. J Histochem Cytochem. 2000;48(10):1291–1306. doi: 10.1177/002215540004801001

[40]

Sato Y, Kiyozumi D, Futaki S, et al. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell. 2019;30(1):56–68. doi: 10.1091/mbc.E18-05-0286

[41]

Sato Y., Kiyozumi D., Futaki S., et al. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche // Mol Biol Cell. 2019. Vol. 30, N 1. P. 56–68. doi: 10.1091/mbc.E18-05-0286

[42]

Sato Y, Kiyozumi D, Futaki S, et al. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell. 2019;30(1):56–68. doi: 10.1091/mbc.E18-05-0286

[43]

Zeisberg M, Kramer K, Sindhi N, et al. De-differentiation of primary human hepatocytes depends on the composition of specialized liver basement membrane. Mol Cell Biochem. 2006;283(1–2):181–189. doi: 10.1007/s11010-006-2677-8

[44]

Zeisberg M., Kramer K., Sindhi N., et al. De-differentiation of primary human hepatocytes depends on the composition of specialized liver basement membrane // Mol Cell Biochem. 2006. Vol. 283, N 1–2. P. 181–189. doi: 10.1007/s11010-006-2677-8

[45]

Zeisberg M, Kramer K, Sindhi N, et al. De-differentiation of primary human hepatocytes depends on the composition of specialized liver basement membrane. Mol Cell Biochem. 2006;283(1–2):181–189. doi: 10.1007/s11010-006-2677-8

[46]

Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017;37(10):3300–3317. doi: 10.1177/0271678X17722436

[47]

Thomsen M.S., Routhe L.J., Moos T. The vascular basement membrane in the healthy and pathological brain // J Cereb Blood Flow Metab. 2017. Vol. 37, N 10. P. 3300–3317. doi: 10.1177/0271678X17722436

[48]

Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017;37(10):3300–3317. doi: 10.1177/0271678X17722436

[49]

Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2018;4(2):78–82. doi: 10.1136/svn-2018-000198

[50]

Xu L., Nirwane A., Yao Y. Basement membrane and blood-brain barrier // Stroke Vasc Neurol. 2018. Vol. 4, N 2. P. 78–82. doi: 10.1136/svn-2018-000198

[51]

Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2018;4(2):78–82. doi: 10.1136/svn-2018-000198

[52]

Voronova OV, Milovanov AP, Mikhaleva LM. Integration approach to study placental vessels in preeclampsia. Clinical Experimental Morphology. 2022;11(3):30–44. (In Russ.). EDN: TVUIAF doi: 10.31088/CEM2022.11.3.30-44

[53]

Воронова О.В., Милованов А.П., Михалева Л.М. Интеграционный подход в исследовании сосудов плаценты при преэклампсии // Клиническая и экспериментальная морфология. 2022. Т. 11, № 3. С. 30–44. EDN: TVUIAF doi: 10.31088/CEM2022.11.3.30-44

[54]

Voronova OV, Milovanov AP, Mikhaleva LM. Integration approach to study placental vessels in preeclampsia. Clinical Experimental Morphology. 2022;11(3):30–44. (In Russ.). EDN: TVUIAF doi: 10.31088/CEM2022.11.3.30-44

[55]

Jarzembowski JA. Normal structure and function of the placenta. In: McManus LM, Mitchell RN, eds. Pathobiology of human disease: A dynamic encyclopedia of disease mechanisms. London: Academic Press; 2014. P. 2308–2321. doi: 10.1016/B978-0-12-386456-7.05001-2

[56]

Jarzembowski J.A. Normal structure and function of the placenta // McManus L.M., Mitchell R.N., eds. Pathobiology of human disease: A dynamic encyclopedia of disease mechanisms. London: Academic Press, 2014. P. 2308–2321. doi: 10.1016/B978-0-12-386456-7.05001-2

[57]

Jarzembowski JA. Normal structure and function of the placenta. In: McManus LM, Mitchell RN, eds. Pathobiology of human disease: A dynamic encyclopedia of disease mechanisms. London: Academic Press; 2014. P. 2308–2321. doi: 10.1016/B978-0-12-386456-7.05001-2

[58]

Korzhevskiy DE, Otellin VA, Neokessariyskiy AA, et al. Organization and cytochemical features of barrier structures in human placenta. Morphology. 2006;129(3):63–64. (In Russ.). EDN: KXHBQR

[59]

Коржевский Д.Э., Отеллин В.А., Неокесарийский А.А. и др. Организация и цитохимические особенности барьерных структур плаценты человека // Морфология. 2006. Т. 129, № 3. С. 63–64. EDN: KXHBQR

[60]

Korzhevskiy DE, Otellin VA, Neokessariyskiy AA, et al. Organization and cytochemical features of barrier structures in human placenta. Morphology. 2006;129(3):63–64. (In Russ.). EDN: KXHBQR

[61]

Korzhevskiy DE, Otellin VA. Structural bases of haematoliquor barrier formation in humans. Uspekhi fiziologicheskikh nauk. 2002;33(4):43–52. (In Russ.). EDN: ZECKGH

[62]

Коржевский Д.Э., Отеллин В.А. Структурные основы становления гематоликворного барьера у человека // Успехи физиологических наук. 2002. Т. 33, № 4. С. 43–52. EDN: ZECKGH

[63]

Korzhevskiy DE, Otellin VA. Structural bases of haematoliquor barrier formation in humans. Uspekhi fiziologicheskikh nauk. 2002;33(4):43–52. (In Russ.). EDN: ZECKGH

Funding

Government of the Russian FederationПравительство РФGovernment of the Russian Federation

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1066KB)

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/