Сharacterization of the immune microenvironment’s cellular composition and its influence on gene expression during metaplastic changes of the gastric mucosa epithelium

Iurii K. Slepov , Aleksey M. Emelin , Roman V. Deev

Morphology ›› 2023, Vol. 161 ›› Issue (4) : 53 -65.

PDF (1572KB)
Morphology ›› 2023, Vol. 161 ›› Issue (4) : 53 -65. DOI: 10.17816/morph.630350
Original Study Articles
research-article

Сharacterization of the immune microenvironment’s cellular composition and its influence on gene expression during metaplastic changes of the gastric mucosa epithelium

Author information +
History +
PDF (1572KB)

Abstract

BACKGROUND: Intestinal metaplasia of the gastric mucosa epithelium in chronic atrophic gastritis is considered a precancerous condition; however, it is potentially reversible. The study of the regulation mechanisms of metaplastic epithelial changes may help in understanding carcinogenesis and cancer prevention.

AIM: To determine whether the microenvironment is related to the development of gastric mucosa epithelium metaplasia in patients with chronic atrophic gastritis by assessing gene expression and cellular composition of immune infiltrates.

MATERIALS AND METHODS: In this retrospective cohort study, the alternative hypothesis was that the composition of the immune microenvironment of the gastric mucosa differed between cases with and without metaplastic changes in the epithelium. Biopsy specimens of the mucosa (n=38) obtained during endoscopic examination from five stomach sites (2 from the antrum, 2 from the body, and 1 from the corner) in patients with chronic atrophic gastritis of unspecified etiology and results of RNA sequencing of biopsy specimens of patients with chronic gastritis registered in the NCBI open database (n=12) were analyzed. Histological analysis, histochemical staining methods, and immunohistochemical study and morphometric, statistical, and bioinformatic analyses were performed.

RESULTS: The proportion of macrophages, T-cytotoxic lymphocytes, and plasmocytes increased in the samples with metaplastic changes of the gastric mucosa epithelium. A correlation was found between T-cytotoxic lymphocytes and risk for metaplasia. It was found that changes in the number of B cells, macrophages M2, T-regulatory cells and NK-cells are associated with increase in the expression of six genes most specific for intestinal-type epithelium.

CONCLUSION: The significant difference in the composition of the immune microenvironment between samples with and without metaplastic changes in the mucosal epithelium indicates the potential influence of immune cells on the development of metaplasia and progression of the pathological process along the Correa cascade. One of the mechanisms of regulation of metaplasia development by the microenvironment may be their influence on gene expression as an epigenetic factor.

Keywords

chronic atrophic gastritis / gastric mucosa epithelium / metaplasia / carcinogenesis / cellular microenvironment / epigenetic processes

Cite this article

Download citation ▾
Iurii K. Slepov, Aleksey M. Emelin, Roman V. Deev. Сharacterization of the immune microenvironment’s cellular composition and its influence on gene expression during metaplastic changes of the gastric mucosa epithelium. Morphology, 2023, 161(4): 53-65 DOI:10.17816/morph.630350

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goldenring JR, Mills JC. Cellular plasticity, reprogramming, and regeneration: metaplasia in the stomach and beyond. Gastroenterology. 2022;162(2):415–430. doi: 10.1053/j.gastro.2021.10.036

[2]

Goldenring J.R., Mills J. C. Cellular plasticity, reprogramming, and regeneration: metaplasia in the stomach and beyond // Gastroenterology. 2022. Vol. 162, N 2. P. 415–430. doi: 10.1053/j.gastro.2021.10.036

[3]

Banks M, Graham D, Jansen M, et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut. 2019;68(9):1545–1575. doi: 10.1136/gutjnl-2018-318126

[4]

Banks M., Graham D., Jansen M., et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma // Gut. 2019. Vol. 68, N 9. P. 1545–1575. doi: 10.1136/gutjnl-2018-318126

[5]

Wizenty J, Tacke F, Sigal M. Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection. Ann Transl Med. 2020;8(8):568. doi: 10.21037/atm.2020.02.178

[6]

Wizenty J., Tacke F., Sigal M. Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection // Ann Transl Med. 2020. Vol. 8, N 8. P. 568. doi: 10.21037/atm.2020.02.178

[7]

Fritsche K, Boccellato F, Schlaermann P, et al. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics. 2022;14(1):193. doi: 10.1186/s13148-022-01406-4

[8]

Fritsche K., Boccellato F., Schlaermann P., et al. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity // Clin Epigenetics. 2022. Vol. 14, N 1. P. 193. doi: 10.1186/s13148-022-01406-4

[9]

Cortés-Márquez AC, Mendoza-Elizalde S, Arenas-Huertero F, et al. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect Dis. 2018;18(1):463. doi: 10.1186/s12879-018-3368-2

[10]

Cortés-Márquez A.C., Mendoza-Elizalde S., Arenas-Huertero F., et al. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model // BMC Infect Dis. 2018. Vol. 18, N 1. P. 463. doi: 10.1186/s12879-018-3368-2

[11]

Li T, Guo H, Li H, et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut. 2019;68(10):1751–1763. doi: 10.1136/gutjnl-2017-315318

[12]

Li T., Guo H., Li H., et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia // Gut. 2019. Vol. 68, N 10. P. 1751–1763. doi: 10.1136/gutjnl-2017-315318

[13]

Li H, Wu Q, Li T, et al. The miR-17-92 cluster as a potential biomarker for the early diagnosis of gastric cancer: evidence and literature review. Oncotarget. 2017;8(28):45060–45071. doi: 10.18632/oncotarget.15023

[14]

Li H., Wu Q., Li T., et al. The miR-17–92 cluster as a potential biomarker for the early diagnosis of gastric cancer: evidence and literature review // Oncotarget. 2017. Vol. 8, N 28. P. 45060–45071. doi: 10.18632/oncotarget.15023

[15]

Zhu Y, Jiang Q, Lou X, et al. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One. 2012;7(4): e35147. doi: 10.1371/journal.pone.0035147

[16]

Zhu Y., Jiang Q., Lou X., et al. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells // PLoS One. 2012. Vol. 7, N 4. P. e35147. doi: 10.1371/journal.pone.0035147

[17]

Petersen CP, Weis VG, Nam KT, et al. Macrophages promote progression of spasmolytic polypeptide-expressing metaplasia after acute loss of parietal cells. Gastroenterology. 2014;146(7):1727–38.e8. doi: 10.1053/j.gastro.2014.02.007

[18]

Petersen C.P., Weis V. G., Nam K. T., et al. Macrophages promote progression of spasmolytic polypeptide-expressing metaplasia after acute loss of parietal cells // Gastroenterology. 2014. Vol. 146, N 7. P. 1727–38. doi: 10.1053/j.gastro.2014.02.007

[19]

Konstantinou D, Bertaux-Skeirik N, Zavros Y. Hedgehog signaling in the stomach. Curr Opin Pharmacol. 2016;31:76–82. doi: 10.1016/j.coph.2016.09.003

[20]

Konstantinou D., Bertaux-Skeirik N., Zavros Y. Hedgehog signaling in the stomach // Curr Opin Pharmacol. 2016. Vol. 31. P. 76–82. doi: 10.1016/j.coph.2016.09.003

[21]

Slepov YK, Laushkin MA, Deev RV. The hipotises of the immune system’s role in carcinogenesis. Genes & cells. 2021;16(1):82–91. EDN: KQUADU doi: 10.23868/202104013

[22]

Слепов Ю.К., Лаушкин М. А., Деев Р. В. Гипотеза о роли иммунной системы в канцерогенезе // Гены и клетки. 2021. Т. 16, № 1. С. 82–91. EDN: KQUADU doi: 10.23868/202104013

[23]

Aruin LI, Kononov AV, Mozgovoj SI. New classification of chronic gastritis. Omsk: D-Grafiks; 2009. 18 p. EDN: YNHYJF

[24]

Аруин Л.И., Кононов А. В., Мозговой С. И. Новая классификация хронического гастрита. Омск: Д-Графикс, 2009. 18 с. EDN: YNHYJF

[25]

Rugge M, Correa P, Di Mario F, et al. OLGA staging for gastritis: a tutorial. Dig Liver Dis. 2008;40(8):650–658. doi: 10.1016/j.dld.2008.02.030

[26]

Rugge M., Correa P., Di Mario F., et al. OLGA staging for gastritis: a tutorial // Dig Liver Dis. 2008. Vol. 40, N 8. P. 650–658. doi: 10.1016/j.dld.2008.02.030

[27]

Li A, Li Y, Li Y, et al. Identification and validation of key genes associated with pathogenesis and prognosis of gastric cancer. PeerJ. 2023;11: e16243. doi: 10.7717/peerj.16243

[28]

Li A., Li Y., Li Y., et al. Identification and validation of key genes associated with pathogenesis and prognosis of gastric cancer // PeerJ. 2023. Vol. 11. P. e16243. doi: 10.7717/peerj.16243

[29]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8

[30]

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 // Genome Biol. 2014. Vol. 15, N 12. P. 550. doi: 10.1186/s13059-014-0550-8

[31]

Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141

[32]

Wu T., Hu E., Xu S., et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data // Innovation (Camb). 2021. Vol. 2, N 3. P. 100141. doi: 10.1016/j.xinn.2021.100141

[33]

Zaitsev A, Chelushkin M, Dyikanov D, et al. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes. Cancer Cell. 2022;40(8):879–894.e16. doi: 10.1016/j.ccell.2022.07.006 https://geneontology.org/ [Internet]. Gene ontology resource. [cited: 2024 Mar 25]. Available from: https://geneontology.org/

[34]

Zaitsev A., Chelushkin M., Dyikanov D., et al. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes // Cancer Cell. 2022. Vol. 40, N 8. P. 879–894. doi: 10.1016/j.ccell.2022.07.006 https://geneontology.org/ [Internet]. Gene ontology resource. Режим доступа: https://geneontology.org/ Дата обращения: 25.03.2024.

[35]

Correa P. Human gastric carcinogenesis: a multistep and multifactorial process — First American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–6740.

[36]

Correa P. Human gastric carcinogenesis: a multistep and multifactorial process — First American Cancer Society award lecture on cancer epidemiology and prevention // Cancer Res. 1992. Vol. 52, N 24. P. 6735–6740.

[37]

Pennelli G, Grillo F, Galuppini F, et al. Gastritis: update on etiological features and histological practical approach. Pathologica. 2020;112(3):153–165. doi: 10.32074/1591-951X-163

[38]

Pennelli G., Grillo F., Galuppini F., et al. Gastritis: update on etiological features and histological practical approach // Pathologica. 2020. Vol. 112, N 3. P. 153–165. doi: 10.32074/1591-951X-163

[39]

Huang RJ, Choi AY, Truong CD, et al. Diagnosis and management of gastric intestinal metaplasia: current status and future directions. Gut Liver. 2019;13(6):596–603. doi: 10.5009/gnl19181

[40]

Huang R.J., Choi A. Y., Truong C. D., et al. Diagnosis and management of gastric intestinal metaplasia: current status and future directions // Gut Liver. 2019. Vol. 13, N 6. P. 596–603. doi: 10.5009/gnl19181

[41]

Piazuelo MB, Bravo LE, Mera RM, et al. The Colombian Chemoprevention Trial: 20-year follow-up of a cohort of patients with gastric precancerous lesions. Gastroenterology. 2021;160(4):1106–1117.e3. doi: 10.1053/j.gastro.2020.11.017

[42]

Piazuelo M.B., Bravo L. E., Mera R. M., et al. The Colombian Chemoprevention Trial: 20-year follow-up of a cohort of patients with gastric precancerous lesions // Gastroenterology. 2021. Vol. 160, N 4. P. 1106–1117. doi: 10.1053/j.gastro.2020.11.017

[43]

Song B, Li T, Zhang Y, et al. Identification and verification of ferroptosis-related genes in gastric intestinal metaplasia. Front Genet. 2023;14:1152414. doi: 10.3389/fgene.2023.1152414

[44]

Song B., Li T., Zhang Y., et al. Identification and verification of ferroptosis-related genes in gastric intestinal metaplasia // Front Genet. 2023. Vol. 14. P. 1152414. doi: 10.3389/fgene.2023.1152414

[45]

Petersen CP, Meyer AR, De Salvo C, et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut. 2018;67(5):805–817. doi: 10.1136/gutjnl-2016-312779

[46]

Petersen C.P., Meyer A. R., De Salvo C., et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach // Gut. 2018. Vol. 67, N 5. P. 805–817. doi: 10.1136/gutjnl-2016-312779

[47]

Ohtani N, Ohtani H, Nakayama T, et al. Infiltration of CD8+ T cells containing RANTES/CCL5+ cytoplasmic granules in actively inflammatory lesions of human chronic gastritis. Lab Invest. 2004;84(3):368–375. doi: 10.1038/labinvest.3700039

[48]

Ohtani N., Ohtani H., Nakayama T., et al. Infiltration of CD8+ T cells containing RANTES/CCL5+ cytoplasmic granules in actively inflammatory lesions of human chronic gastritis // Lab Invest. 2004. Vol. 84, N 3. P. 368–375. doi: 10.1038/labinvest.3700039

[49]

Wang R, Song S, Qin J, et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell. 2023;41(8):1407–1426.e9. doi: 10.1016/j.ccell.2023.06.005

[50]

Wang R., Song S., Qin J., et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression // Cancer Cell. 2023. Vol. 41, N 8. P. 1407–1426. doi: 10.1016/j.ccell.2023.06.005

[51]

Battista S, Ambrosio MR, Limarzi F, et al. Molecular alterations in gastric preneoplastic lesions and early gastric cancer. Int J Mol Sci. 2021;22(13):6652. doi: 10.3390/ijms22136652

[52]

Battista S., Ambrosio M. R., Limarzi F., et al. Molecular alterations in gastric preneoplastic lesions and early gastric cancer // Int J Mol Sci. 2021. Vol. 22, N 13. P. 6652. doi: 10.3390/ijms22136652

[53]

Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006;19(3):449–490. doi: 10.1128/CMR.00054-05 https://www.ncbi.nlm.nih.gov/ [Internet]. NCBI. MYO7B myosin VIIB [Homo sapiens (human)] [cited: 2024 Mar 25]. Available from: https://www.ncbi.nlm.nih.gov/gene/4648#gene-expression https://www.uniprot.org/ [Internet]. UniProt [cited: 2024 Mar 25]. Available from: https://www.uniprot.org/uniprotkb/Q12864/entry#function

[54]

Kusters J.G., van Vliet A. H., Kuipers E. J. Pathogenesis of Helicobacter pylori infection // Clin Microbiol Rev. 2006. Vol. 19, N 3. P. 449–490. doi: 10.1128/CMR.00054-05 https://www.ncbi.nlm.nih.gov/ [Internet]. NCBI. MYO7B myosin VIIB [Homo sapiens (human)]. Режим доступа: https://www.ncbi.nlm.nih.gov/gene/4648#gene-expression Дата обращения: 25.03.2024. https://www.uniprot.org/ [Internet]. UniProt. Режим доступа: https://www.uniprot.org/uniprotkb/Q12864/entry#function Дата обращения: 25.03.2024.

[55]

Funakoshi S, Shimizu T, Numata O, et al. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS One. 2015;10(1): e0117566. doi: 10.1371/journal.pone.0117566 https://www.ncbi.nlm.nih.gov/ [Internet]. NCBI. CDX1 caudal type homeobox 1 [Homo sapiens (human)] [cited: 2024 Mar 25]. Available from: https://www.ncbi.nlm.nih.gov/gene/1044#summary

[56]

Funakoshi S., Shimizu T., Numata O., et al. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells // PLoS One. 2015. Vol. 10, N 1. P. e0117566. doi: 10.1371/journal.pone.0117566 https://www.ncbi.nlm.nih.gov/ [Internet]. NCBI. CDX1 caudal type homeobox 1 [Homo sapiens (human)]. Режим доступа: https://www.ncbi.nlm.nih.gov/gene/1044#summary Дата обращения: 25.03.2024.

[57]

Kang JM, Lee BH, Kim N, et al. CDX1 and CDX2 expression in intestinal metaplasia, dysplasia and gastric cancer. J Korean Med Sci. 2011;26(5):647–653. doi: 10.3346/jkms.2011.26.5.647

[58]

Kang J.M., Lee B. H., Kim N., et al. CDX1 and CDX2 expression in intestinal metaplasia, dysplasia and gastric cancer // J Korean Med Sci. 2011. Vol. 26, N 5. P. 647–653. doi: 10.3346/jkms.2011.26.5.647

[59]

Kindlund B, Sjöling A, Hansson M, et al. FOXP3-expressing CD4(+) T-cell numbers increase in areas of duodenal gastric metaplasia and are associated to CD4(+) T-cell aggregates in the duodenum of Helicobacter pylori-infected duodenal ulcer patients. Helicobacter. 2009;14(3):192–201. doi: 10.1111/j.1523-5378.2009.00673.x

[60]

Kindlund B., Sjöling A., Hansson M., et al. FOXP3-expressing CD4(+) T-cell numbers increase in areas of duodenal gastric metaplasia and are associated to CD4(+) T-cell aggregates in the duodenum of Helicobacter pylori-infected duodenal ulcer patients // Helicobacter. 2009. Vol. 14, N 3. P. 192–201. doi: 10.1111/j.1523-5378.2009.00673.x

[61]

Negovan A, Iancu M, Tripon F, et al. Cytokine TGF-β1, TNF-α, IFN-γ and IL-6 gene polymorphisms and localization of premalignant gastric lesions in immunohistochemically H. pylori-negative patients. Int J Med Sci. 2021;18(12):2743–2751. doi: 10.7150/ijms.60517

[62]

Negovan A., Iancu M., Tripon F., et al. Cytokine TGF-β1, TNF-α, IFN-γ and IL-6 gene polymorphisms and localization of premalignant gastric lesions in immunohistochemically H. pylori-negative patients // International Journal of Medical Sciences. 2021. Vol. 18, N 12. P. 2743–2751. doi: 10.7150/ijms.60517

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1572KB)

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/