Regenerative osteogenesis at the interface of tissue–osteoplastic material

Evgeniy V. Presnyakov , Khurshed R. Kurbonov , Irina P. Sorochanu , Nikita I. Zhemkov , Dzhamal F. Galbatsov , Pavel S. Podluzhny , Ivan A. Larionov , Viktor B. Bessonov , Aleksey M. Emelin , Il’ya Ya. Bozo , Roman V. Deev

Morphology ›› 2023, Vol. 161 ›› Issue (4) : 33 -42.

PDF
Morphology ›› 2023, Vol. 161 ›› Issue (4) : 33 -42. DOI: 10.17816/morph.629963
Original Study Articles
research-article

Regenerative osteogenesis at the interface of tissue–osteoplastic material

Author information +
History +
PDF

Abstract

BACKGROUND: About a half a century ago, the concept of physiological regeneration of bone tissue was introduced, which is based on the functioning of basic multicellular units (BMUs). Later, such an approach can also be used to understand the regularities of reparative regeneration. Bone grafting using gene-activated synthetic replacement materials introduces additional features into the reparative process because the material becomes an active participant in the process. Bone grafts sequentially undergo resorption and metabolism and become a matrix on the basis of which the BMUs implement regenerative osteogenesis.

AIM: To reveal the function of BMUs in a human bone wound during implantation of a gene-activated osteoplastic material from octacalcium phosphate.

MATERIALS AND METHODS: Microfocal computed tomography, histological and immunohistochemical studies, histomorphometry were analyzed and processed statistically.

RESULTS: When using an ordinary product and a gene-activated material based on octacalcium phosphate, the bone regenerate was represented by a multi-tissue structure formed by bone beams surrounding non-resorbed fragments of bone replacement products. In the histomorphometric analysis of gene-activated material, the median area of the unresorbed granules was 0.039 [0.013; 0.079] mm2, and the median area of the osteoclasts was 67 [22; 235] cells/mm2. In the group using an ordinary product, the values were 0.029 [0.009; 0.068] mm2 and 15 [0; 79] cells/mm2, respectively.

CONCLUSION: BMUs that are in various phases of functional activity (resorption, reversion, formation, and rest) can be detected at the gene-activated material–bone interface. The last phase appears only in cases when the components of the material do not induce osteogenesis.

Keywords

regeneration / osteogenesis / octacalcium phosphate / gene-activated material / basic multicellular units

Cite this article

Download citation ▾
Evgeniy V. Presnyakov, Khurshed R. Kurbonov, Irina P. Sorochanu, Nikita I. Zhemkov, Dzhamal F. Galbatsov, Pavel S. Podluzhny, Ivan A. Larionov, Viktor B. Bessonov, Aleksey M. Emelin, Il’ya Ya. Bozo, Roman V. Deev. Regenerative osteogenesis at the interface of tissue–osteoplastic material. Morphology, 2023, 161(4): 33-42 DOI:10.17816/morph.629963

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonartsev AP, Muraev AA, Deyev RV, Volkov AV. Material-associated bone resorption. Sovremennye tehnologii v medicine [Modern Technologies in Medicine]. 2018;10(4):26–33. EDN: YUVDQD doi: 10.17691/stm2018.10.4.03

[2]

Бонарцев А.П., Мураев А. А., Деев Р. В., Волков А. В. Материал-ассоциированная костная резорбция // Современные технологии в медицине. 2018. Т. 10, № 4. С. 26–33. EDN: YUVDQD doi: 10.17691/stm2018.10.4.03

[3]

Deev RV. Analysis of reparative regeneration of skull roof bones. Morphology. 2007;132(6):64–69. EDN: MUYHHJ

[4]

Деев Р. В. Анализ репаративной регенерации костей крыши черепа // Морфология. 2007. Т. 132, № 6. С. 64–69. EDN: MUYHHJ

[5]

Deev RV, Plaksa IL, Mavlikeev MO, et al. Early stages of regenerative histogenesis in the periosteal part of the human callus. Morphology. 2018;153(2):63–69. EDN: XNKVDF

[6]

Деев Р.В., Плакса И. Л., Мавликеев М. О., и др. Ранние стадии регенерационного гистогенеза в периостальной части костной мозоли у человека // Морфология. 2018. Т. 153, № 2. С. 63–69. EDN: XNKVDF

[7]

Gololobov VG, Deev RV. Stem stromal cells and osteoblastic cell differon. Morphology. 2003;123(1):9–19. (In Russ). EDN: WJKHPL

[8]

Гололобов В.Г., Деев Р. В. Стволовые стромальные клетки и остеобластический клеточный дифферон // Морфология. 2003. Т. 123, № 1. С. 9–19. EDN: WJKHPL

[9]

Gololobov VG, DanilovRK, editors. Morphofunctional organization, reactivity and regeneration of bone tissue. Saint Petersburg: Military Medical Academy named after S. M. Kirov; 2006. 47 p. (In Russ). EDN: QKOLRV

[10]

Морфофункциональная организация, реактивность и регенерация костной ткани / под ред. В.Г. Гололобова, Р. К. Данилова. Санкт-Петербург: Военно-медицинская академия имени С. М. Кирова, 2006. 47 с. EDN: QKOLRV

[11]

Gololobov VG, Dedukh NV, Deev RV. Skeletal tissues and organs. In: Danilov RK, editor. Manual of Histology. 2nd edition. Saint Petersburg: SpetsLit; 2011. P. 238–322. (In Russ).

[12]

Гололобов В.Г., Дедух Н. В., Деев Р. В. Скелетные ткани и органы. В кн.: Руководство по гистологии. 2-е издание / под ред. Р. К. Данилова. Санкт-Петербург: СпецЛит, 2011. C. 238–322.

[13]

Deev RV, Bozo IY, Isaev AA, Drobyshev AY. Ordinary and activated bone grafts: applied classification and the main features. BioMed Research International. 2015;2015:365050. EDN: VEQAAD doi: 10.1155/2015/365050

[14]

Deev R.V., Bozo I. Y., Isaev A. A., Drobyshev A. Y. Ordinary and activated bone grafts: applied classification and the main features // BioMed Research International. 2015. Vol. 2015. P. 365050. EDN: VEQAAD doi: 10.1155/2015/365050

[15]

Sarkisov DS, Perov YuL, editors. Microscopic technique: a guide for doctors and laboratory assistants. Moscow: Meditsina; 1996. 542 p. (In Russ).

[16]

Микроскопическая техника: руководство для врачей и лаборантов / под ред. Д. С. Саркисова, Ю. Л. Перова. Москва: Медицина, 1996. 542 c.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/