Renal proliferation and apoptosis against ascorbic acid administration in a model of acute radiation nephropathy

Grigory A. Demyashkin , Zhanna E. Uruskhanova , Sergey N. Koryakin , Mikhail A. Parshenkov , Tatiana K. Dubovaya , Galina M. Rodionova , Vladimir I. Shchekin , Yuliya V. Ivchenko , Olga V. Ionova

Morphology ›› 2024, Vol. 162 ›› Issue (1) : 16 -30.

PDF
Morphology ›› 2024, Vol. 162 ›› Issue (1) : 16 -30. DOI: 10.17816/morph.629410
Original Study Articles
research-article

Renal proliferation and apoptosis against ascorbic acid administration in a model of acute radiation nephropathy

Author information +
History +
PDF

Abstract

BACKGROUND: Radiation exposure, an integral part of the treatment of malignant neoplasms, is associated with a risk of radiation nephropathy because of the high radiosensitivity of the kidneys. The analysis of renal tissue proliferation and apoptosis is important to understand the mechanisms of radiation damage and develop treatment strategies.

AIM: To evaluate endothelial proliferation and apoptosis of vascular tubules and nephrocytes during preradiation administration of ascorbic acid in a model of radiation nephropathy.

MATERIALS AND METHODS: Wistar rats (n=90) were divided into groups: I, control (n=15); II, irradiation, 2 Gy dose (n=15); III, irradiation, 8 Gy dose (n=15); IV, irradiation, 2 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); V, irradiation, 8 Gy dose + ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15); VI, ascorbic acid, intraperitoneal injection at 50 mg/kg (n=15). Kidney slides were stained with hematoxylin and eosin. In addition, immunohistochemical evaluation of the expression levels of Ki-67- and Cas-3-positive cells was performed.

RESULTS: The histological study showed that preradiation administration of ascorbic acid (intraperitoneal injection of 50 mg/kg) in the acute radiation nephropathy model induced by local irradiation with electrons at 2 and 8 Gy contributed to the statistical reduction of pathomorphologic changes. According to the results of immunohistochemical evaluation of proliferation and apoptosis, distribution of Ki-67- and Cas-3-positive cells in the tubules, epitheliocytes of proximal and distal tubules of nephrons in mono-irradiation groups revealed the activation of the terminal stage of cell death, which correlated with the electron irradiation dose. Moreover, in the experimental groups with preirradiation administration of ascorbic acid, a significant decrease in the intensity of apoptosis was recorded.

CONCLUSION: Preradiation administration of ascorbic acid reduces the strength of radiation-induced kidney damage and the effect of electron irradiation on the life cycle of tubular cells and epitheliocytes of nephron tubules while increasing the effectiveness of the antioxidant defense.

Keywords

radiation nephropathy / electron irradiation / kidneys / ascorbic acid / cell cycle / proliferation / apoptosis

Cite this article

Download citation ▾
Grigory A. Demyashkin, Zhanna E. Uruskhanova, Sergey N. Koryakin, Mikhail A. Parshenkov, Tatiana K. Dubovaya, Galina M. Rodionova, Vladimir I. Shchekin, Yuliya V. Ivchenko, Olga V. Ionova. Renal proliferation and apoptosis against ascorbic acid administration in a model of acute radiation nephropathy. Morphology, 2024, 162(1): 16-30 DOI:10.17816/morph.629410

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pinto R, Ardoino L, Villani P, Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review. Int J Environ Res Public Health. 2023;20(3):2071. EDN: UWBDFH doi: 10.3390/ijerph20032071

[2]

Pinto R., Ardoino L., Villani P., Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review // Int J Environ Res Public Health. 2023. Vol. 20, N 3. P. 2071. EDN: UWBDFH doi: 10.3390/ijerph20032071

[3]

Pinto R, Ardoino L, Villani P, Marino C. In vivo studies on radiofrequency (100 kHz-300 GHz) electromagnetic field exposure and cancer: A systematic review. Int J Environ Res Public Health. 2023;20(3):2071. EDN: UWBDFH doi: 10.3390/ijerph20032071

[4]

Wild CP, Espina C, Bauld L, et al. Cancer prevention Europe. Mol Oncol. 2019;13(3):528–534. doi: 10.1002/1878-0261.12455

[5]

Wild C.P., Espina C., Bauld L., et al. Cancer prevention Europe // Mol Oncol. 2019. Vol. 13, N 3. P. 528–534. doi: 10.1002/1878-0261.12455

[6]

Wild CP, Espina C, Bauld L, et al. Cancer prevention Europe. Mol Oncol. 2019;13(3):528–534. doi: 10.1002/1878-0261.12455

[7]

Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. EDN: CJOKXL doi: 10.1155/2019/3010342

[8]

Wei J., Wang B., Wang H., et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms // Oxid Med Cell Longev. 2019. Vol. 2019. P. 3010342. EDN: CJOKXL doi: 10.1155/2019/3010342

[9]

Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. EDN: CJOKXL doi: 10.1155/2019/3010342

[10]

Le VH, Kha QH, Minh TN, et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer. J Digit Imaging. 2023;36(3):911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0

[11]

Le V.H., Kha Q.H., Minh T.N., et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer // J Digit Imaging. 2023. Vol. 36, N 3. P. 911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0

[12]

Le VH, Kha QH, Minh TN, et al. Development and validation of CT-based radiomics signature for overall survival prediction in multi-organ cancer. J Digit Imaging. 2023;36(3):911–922. EDN: CUARJO doi: 10.1007/s10278-023-00778-0

[13]

Dawson L, Kavanagh B, Paulino A, et al. Radiation-associated kidney injury. Int J Radiation Oncol Biol Physics. 2010;76(3):108–115. doi: 10.1016/j.ijrobp.2009.02.089

[14]

Dawson L., Kavanagh B., Paulino A., et al. Radiation-associated kidney injury // Int J Radiation Oncol Biol Physics. 2010. Vol. 76, N 3. P. 108–115. doi: 10.1016/j.ijrobp.2009.02.089

[15]

Dawson L, Kavanagh B, Paulino A, et al. Radiation-associated kidney injury. Int J Radiation Oncol Biol Physics. 2010;76(3):108–115. doi: 10.1016/j.ijrobp.2009.02.089

[16]

Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 2018;8(1):16812. doi: 10.1038/s41598-018-34893-8

[17]

Aratani S., Tagawa M., Nagasaka S., et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats // Sci Rep. 2018. Vol. 8, N 1. P. 16812. doi: 10.1038/s41598-018-34893-8

[18]

Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 2018;8(1):16812. doi: 10.1038/s41598-018-34893-8

[19]

Scholz M, Kraft-Weyrather W, Ritter S, Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int J Radiation Biol. 1994;66(1):59–75. EDN: XYSSVT doi: 10.1080/09553009414550951

[20]

Scholz M., Kraft-Weyrather W., Ritter S., Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells // Int J Radiation Biol. 1994. Vol. 66, N 1. P. 59–75. EDN: XYSSVT doi: 10.1080/09553009414550951

[21]

Scholz M, Kraft-Weyrather W, Ritter S, Kraft G. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells. Int J Radiation Biol. 1994;66(1):59–75. EDN: XYSSVT doi: 10.1080/09553009414550951

[22]

Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789. EDN: GIFYCB doi: 10.3390/cancers11111789

[23]

Mavragani I.V., Nikitaki Z., Kalospyros S.A., Georgakilas A.G. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance // Cancers (Basel). 2019. Vol. 11, N 11. P. 1789. EDN: GIFYCB doi: 10.3390/cancers11111789

[24]

Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers (Basel). 2019;11(11):1789. EDN: GIFYCB doi: 10.3390/cancers11111789

[25]

Carante MP, Ballarini F. Radiation damage in biomolecules and cells. Int J Mol Sci. 2020;21(21):8188. EDN: CXOOGB doi: 10.3390/ijms21218188

[26]

Carante M.P., Ballarini F. Radiation damage in biomolecules and cells // Int J Mol Sci. 2020. Vol. 21, N 21. P. 8188. EDN: CXOOGB doi: 10.3390/ijms21218188

[27]

Carante MP, Ballarini F. Radiation damage in biomolecules and cells. Int J Mol Sci. 2020;21(21):8188. EDN: CXOOGB doi: 10.3390/ijms21218188

[28]

Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Developmental Biol. 2020;(8):41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041

[29]

Sia J., Szmyd R., Hau E., Gee H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer // Front Cell Developmental Biol. 2020. N 8. P. 41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041

[30]

Sia J, Szmyd R, Hau E, Gee HE. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Developmental Biol. 2020;(8):41. EDN: IHCCVI doi: 10.3389/fcell.2020.00041

[31]

Ashrafizadeh M, Farhood B, Eleojo Musa A, et al. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020;(86):106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761

[32]

Ashrafizadeh M., Farhood B., Eleojo Musa A., et al. Damage-associated molecular patterns in tumor radiotherapy // Int Immunopharmacol. 2020. Vol. 86. P. 106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761

[33]

Ashrafizadeh M, Farhood B, Eleojo Musa A, et al. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 2020;(86):106761. EDN: UNXGZM doi: 10.1016/j.intimp.2020.106761

[34]

Nano M, Mondo JA, Harwood J, et al. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023;120(4): e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120

[35]

Nano M., Mondo J.A., Harwood J., et al. Cell survival following direct executioner-caspase activation // Proc Natl Acad Sci USA. 2023. Vol. 120, N 4. P. e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120

[36]

Nano M, Mondo JA, Harwood J, et al. Cell survival following direct executioner-caspase activation. Proc Natl Acad Sci USA. 2023;120(4): e2216531120. EDN: QFKEAX doi: 10.1073/pnas.2216531120

[37]

Demyashkin GA, Koryakin SN, Stepanova YY, et al. Morphological characteristics of kidneys in rats after targeted irradiation with electrons in a dose of 2, 4 and 6 Gy. Veterinarny vrach. 2021;(5)9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16

[38]

Демяшкин Г.А., Корякин С.Н., Степанова Ю.Ю., и др. Морфологическая характеристика почек крыс после прицельного облучения электронами в дозах 2, 4 и 6 Гр // Ветеринарный врач. 2021. № 5. P. 9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16

[39]

Demyashkin GA, Koryakin SN, Stepanova YY, et al. Morphological characteristics of kidneys in rats after targeted irradiation with electrons in a dose of 2, 4 and 6 Gy. Veterinarny vrach. 2021;(5)9–16. EDN: YIAPCK doi: 10.33632/1998-698Х.2021-5-9-16

[40]

Bunyatyan ND, Vasiliev AN, Verstakova OL, et al. Manual on conducting preclinical studies of medicines. Part I. Mironov AN, editor.Moscow: Grif i K; 2012. 944 р. (In Russ.).

[41]

Бунятян Н.Д., Васильев А.Н., Верстакова О.Л., и др. Руководство по проведению доклинических исследований лекарственных средств. Часть первая / отв. ред. А.Н. Миронов. Москва: Гриф и К, 2012. 944 с.

[42]

Bunyatyan ND, Vasiliev AN, Verstakova OL, et al. Manual on conducting preclinical studies of medicines. Part I. Mironov AN, editor.Moscow: Grif i K; 2012. 944 р. (In Russ.).

[43]

Yumusak N, Sadic M, Yucel G, et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study. Nucl Med Commun. 2018;39(2):131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788

[44]

Yumusak N., Sadic M., Yucel G., et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study // Nucl Med Commun. 2018. Vol. 39, N 2. P. 131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788

[45]

Yumusak N, Sadic M, Yucel G, et al. Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: An experimental and immunohistochemical study. Nucl Med Commun. 2018;39(2):131–139. EDN: YFTKAP doi: 10.1097/MNM.0000000000000788

[46]

Kolina IB, Bobkova IN. Renal damage with malignant neoplasms. Clinician. 2014;(2):7–16. EDN: TIINVP

[47]

Колина И.Б., Бобкова И.Н. Поражение почек при злокачественных образованиях // Клиницист. 2014. № 2. С. 7–16. EDN: TIINVP

[48]

Kolina IB, Bobkova IN. Renal damage with malignant neoplasms. Clinician. 2014;(2):7–16. EDN: TIINVP

[49]

Zhao W, Zhuang P, Chen Y, et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res. 2023;72(3):301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007

[50]

Zhao W., Zhuang P., Chen Y., et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis // Physiol Res. 2023. Vol. 72, N 3. P. 301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007

[51]

Zhao W, Zhuang P, Chen Y, et al. “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res. 2023;72(3):301–307. EDN: XLCYPX doi: 10.33549/physiolres.935007

[52]

McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 2017;9(4):1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225

[53]

McRobb L.S., McKay M.J., Gamble J.R., et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence // Aging (Albany NY). 2017. Vol. 9, N 4. P. 1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225

[54]

McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 2017;9(4):1248–1268. EDN: YEVGSZ doi: 10.18632/aging.101225

[55]

Fujino S, Sun J, Nakayama S, et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage. Radiat Res. 2022;197(4):384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1

[56]

Fujino S., Sun J., Nakayama S., et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage // Radiat Res. 2022. Vol. 197, N 4. P. 384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1

[57]

Fujino S, Sun J, Nakayama S, et al. A combination of iohexol treatment and ionizing radiation exposure enhances kidney injury in contrast-induced nephropathy by increasing DNA damage. Radiat Res. 2022;197(4):384–395. EDN: YNXLII doi: 10.1667/RADE-21-00178.1

[58]

Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations. Cancers (Basel). 2023;15(3):808. EDN: RKJHIR doi: 10.3390/cancers15030808

[59]

Finkelman B.S., Zhang H., Hicks D.G., Turner B.M. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations // Cancers (Basel). 2023. Vol. 15, N 3. P. 808. EDN: RKJHIR doi: 10.3390/cancers15030808

[60]

Finkelman BS, Zhang H, Hicks DG, Turner BM. The evolution of Ki-67 and breast carcinoma: Past observations, present directions, and future considerations. Cancers (Basel). 2023;15(3):808. EDN: RKJHIR doi: 10.3390/cancers15030808

[61]

Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study. J Clin Med. 2022;11(17):5196. EDN: YDLFYK doi: 10.3390/jcm11175196

[62]

Chrabańska M., Rynkiewicz M., Kiczmer P., Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study // J Clin Med. 2022. Vol. 11, N 17. P. 5196. EDN: YDLFYK doi: 10.3390/jcm11175196

[63]

Chrabańska M, Rynkiewicz M, Kiczmer P, Drozdzowska B. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: A prospective cohort study. J Clin Med. 2022;11(17):5196. EDN: YDLFYK doi: 10.3390/jcm11175196

[64]

Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;(154):69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009

[65]

Li Z., Li F., Pan C., et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma // Lung Cancer. 2021. N 154. P. 69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009

[66]

Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;(154):69–75. EDN: CIWVOU doi: 10.1016/j.lungcan.2021.02.009

[67]

Kim DH, Park JS, Choi HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Disease. 2021;12(4):320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z

[68]

Kim D.H., Park J.S., Choi H.I., et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD // Cell Death Disease. 2021. Vol. 12, N 4. P. 320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z

[69]

Kim DH, Park JS, Choi HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Disease. 2021;12(4):320. EDN: MEBYNA doi: 10.1038/s41419-021-03620-z

[70]

Li G, Wang S, Fan Z. Oxidative stress in intestinal ischemia-reperfusion. Front Med (Lausanne). 2022;(8):750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731

[71]

Li G., Wang S., Fan Z. Oxidative stress in intestinal ischemia-reperfusion // Front Med (Lausanne). 2022. N 8. P. 750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731

[72]

Li G, Wang S, Fan Z. Oxidative stress in intestinal ischemia-reperfusion. Front Med (Lausanne). 2022;(8):750731. EDN: TCFEIW doi: 10.3389/fmed.2021.750731

[73]

Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25(1):43–50. doi: 10.1038/sj.onc.1209004

[74]

Wang Q., Zhou Y., Wang X., Evers B.M. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase // Oncogene. 2006. Vol. 25, N 1. P. 43–50. doi: 10.1038/sj.onc.1209004

[75]

Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25(1):43–50. doi: 10.1038/sj.onc.1209004

[76]

Okunieff P, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79(2):377–381. doi: 10.1093/JNCI/79.2.377

[77]

Okunieff P., Suit H.D. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas // J Natl Cancer Inst. 1987. Vol. 79, N 2. P. 377–381. doi: 10.1093/JNCI/79.2.377

[78]

Okunieff P, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79(2):377–381. doi: 10.1093/JNCI/79.2.377

[79]

González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ Toxicol Pharmacol. 2018;62:210–214. doi: 10.1016/j.etap.2018.07.015

[80]

González E., Cruces M.P., Pimentel E., Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate // Environ Toxicol Pharmacol. 2018. Vol. 62. P. 210–214. doi: 10.1016/j.etap.2018.07.015

[81]

González E, Cruces MP, Pimentel E, Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ Toxicol Pharmacol. 2018;62:210–214. doi: 10.1016/j.etap.2018.07.015

[82]

Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1–2):111–121. doi: 10.1016/S0009-8981(03)00132-3

[83]

Jagetia G.C., Rajanikant G.K., Rao S.K., Baliga M.S. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation // Clin Chim Acta. 2003. Vol. 332, N 1–2. P. 111–121. doi: 10.1016/S0009-8981(03)00132-3

[84]

Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta. 2003;332(1–2):111–121. doi: 10.1016/S0009-8981(03)00132-3

[85]

Mikirova N, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Transl Med. 2008;6:50. doi: 10.1186/1479-5876-6-50

[86]

Mikirova N., Ichim T.E., Riordan N.H. Anti-angiogenic effect of high doses of ascorbic acid // J Transl Med. 2008. Vol. 6. P. 50. doi: 10.1186/1479-5876-6-50

[87]

Mikirova N, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Transl Med. 2008;6:50. doi: 10.1186/1479-5876-6-50

[88]

Morel C, Carlson SM, White FM, Davis RJ. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol. 2009;29(14):3845–3852. doi: 10.1128/MCB.00279-09

[89]

Morel C., Carlson S.M., White F.M., Davis R.J. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis // Mol Cell Biol. 2009. Vol. 29, N 14. P. 3845–3852. doi: 10.1128/MCB.00279-09

[90]

Morel C, Carlson SM, White FM, Davis RJ. Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol. 2009;29(14):3845–3852. doi: 10.1128/MCB.00279-09

[91]

Allum AJ, Mussallem JT, Froning CE, et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes (Basel). 2020;11(3):238. doi: 10.3390/genes11030238

[92]

Allum A.J., Mussallem J.T., Froning C.E., et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB // Genes (Basel). 2020. Vol. 11, N 3. P. 238. doi: 10.3390/genes11030238

[93]

Allum AJ, Mussallem JT, Froning CE, et al. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes (Basel). 2020;11(3):238. doi: 10.3390/genes11030238

[94]

Petruk G, del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxidat Med Cell Longev. 2018;2018:1454936. EDN: VJFAYU doi: 10.1155/2018/1454936

[95]

Petruk G., del Giudice R., Rigano M.M., Monti D.M. Antioxidants from plants protect against skin photoaging // Oxidat Med Cell Longev. 2018. Vol. 2018. P. 1454936. EDN: VJFAYU doi: 10.1155/2018/1454936

[96]

Petruk G, del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxidat Med Cell Longev. 2018;2018:1454936. EDN: VJFAYU doi: 10.1155/2018/1454936

[97]

El-Sonbaty SM, Moawed FS, Elbakry MM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. Environ Toxicol. 2021;36(4):451–459. EDN: RANHHY doi: 10.1002/tox.23050

[98]

El-Sonbaty S.M., Moawed F.S., Elbakry M.M. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney // Environ Toxicol. 2021. Vol. 36, N 4. P. 451–459. EDN: RANHHY doi: 10.1002/tox.23050

[99]

El-Sonbaty SM, Moawed FS, Elbakry MM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. Environ Toxicol. 2021;36(4):451–459. EDN: RANHHY doi: 10.1002/tox.23050

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/