Influence of dark deprivation on the ultrastructure and mitochondrial apparatus of rat hepatocytes

David A. Areshidze

Morphology ›› 2023, Vol. 161 ›› Issue (3) : 53 -60.

PDF
Morphology ›› 2023, Vol. 161 ›› Issue (3) : 53 -60. DOI: 10.17816/morph.628955
Original Study Articles
research-article

Influence of dark deprivation on the ultrastructure and mitochondrial apparatus of rat hepatocytes

Author information +
History +
PDF

Abstract

BACKGROUND: Melatonin is a hormone with a wide range of biological activities. The diversity of biological regulatory effects inherent in MT involves this hormone in the formation of adaptive reactions and in the pathogenesis of various diseases. А decrease оf мelatonin secretion due to exposure to light at night is observed in a significant proportion of people. A number of previous studies have shown that melatonin deficiency, causes significant changes in the structure of the liver of laboratory animals. The state of ultrastructural features of hepatocytes, and in particular their mitochondria, under conditions of dark deprivation remains poorly understood.

AIM: To study the ultrastructural features of liver hepatocytes of male Wistar rats under conditions of 21-day dark deprivation.

MATERIALS AND METHODS: The study was performed on 40 male Wistar rats, divided into 2 groups: group 1 was kept under a fixed light regime; group 2 was kept under dark deprivation conditions for 24 h a day. Liver samples, were analyzed using a transmission electron microscope. Micromorphometric methods were used to assess the mitochondrial apparatus of hepatocytes. Statistical processing of the results was performed in the GraphPad Prism v. 8.4.1 program (GraphPad, USA).

RESULTS: In hepatocytes of rats of II group, dark deprivation causes a transformation in the shape of the nuclei, accompanied by swelling of the cytoplasm and the presence of a significant number of lipid-containing vacuoles. Mitochondria are characterized by pronounced hyperplasia, size polymorphism, high electron density, and disordered cristae orientation. In the cytoplasm, the phenomenon of shedding of ribosomes from the endoplasmic reticulum is observed. The number of glycogen granules is significantly reduced. The studied micromorphometric parameters of mitochondria are significantly reduced relative to the control.

CONCLUSIONS: The study suggests that melatonin deficiency, resulting from dark deprivation, leads to a number of significant ultrastructural changes in hepatocytes, especially their mitochondrial apparatus.

Keywords

hepatocyte / melatonin / mitochondria

Cite this article

Download citation ▾
David A. Areshidze. Influence of dark deprivation on the ultrastructure and mitochondrial apparatus of rat hepatocytes. Morphology, 2023, 161(3): 53-60 DOI:10.17816/morph.628955

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen L, Gu T, Li B, et al. Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis. Biochim Biophys Acta Mol Cell Res. 2019;1866(10):1663–1675. doi: 10.1016/j.bbamcr.2019.06.011

[2]

Chen L., Gu T., Li B., et al. Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis // Biochim Biophys Acta Mol Cell Res. 2019. Vol. 1866, N 10. P. 1663–1675. doi: 10.1016/j.bbamcr.2019.06.011

[3]

Wang J, Mauvoisin D, Martin E, et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 2017;25(1):102–117. doi: 10.1016/j.cmet.2016.10.003

[4]

Wang J., Mauvoisin D., Martin E., et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver // Cell Metab. 2017. Vol. 25, N 1. P. 102–117. doi: 10.1016/j.cmet.2016.10.003

[5]

Hu S, Yin S, Jiang X, et al. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol. 2009;616(1-3):287–292. doi: 10.1016/j.ejphar.2009.06.044

[6]

Hu S., Yin S., Jiang X., et al. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis // Eur J Pharmacol. 2009. Vol. 616 (1-3). P. 287–292. doi: 10.1016/j.ejphar.2009.06.044

[7]

Wu N, Meng F, Zhou T, et al. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation. FASEB J. 2017;31(10):4305–4324. doi: 10.1096/fj.201700097R

[8]

Wu N., Meng F., Zhou T., et al. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation // FASEB J. 2017. Vol. 31, N 10. P. 4305–4324. doi: 10.1096/fj.201700097R

[9]

Berezovskiy VA, Yanko RV, Litovka IG, Volovich OI. Exogenous melatonin effects on the reactivity of rats liver parenchima. Ukraїns’kij morfologіchnij al’manah. 2012;10(4):178–181. EDN: RPDYJB

[10]

Березовский В.А., Янко Р.В., Литовка И.Г., Волович О.И. Реактивность паренхимы печени крыс после введения экзогенного мелатонина // Український морфологічний альманах. 2012. Т. 10, № 4. С. 178–181. EDN: RPDYJB

[11]

Yanko R. The combined influence of the intermittent normobaric hypoxia and melatonin on morphofunctional activity of the rat’s liver parenchyma. Bulletin of Taras Shevchenko National University of KyivProblems of Physiological Functions Regulation. 2018;25(2):36–40.

[12]

Yanko R. The combined influence of the intermittent normobaric hypoxia and melatonin on morphofunctional activity of the rat’s liver parenchyma // Bulletin of Taras Shevchenko National University of Kyiv Problems of Physiological Functions Regulation. 2018. V. 25, N 2. P. 36–40.

[13]

Abbasoglu O, Berker M, Ayhan A, et al. The effect of the pineal gland on liver regeneration in rats. J Hepatol. 1995;23(5):578–581. doi: 10.1016/0168-8278(95)80065-4

[14]

Abbasoglu O., Berker M., Ayhan A., et al. The effect of the pineal gland on liver regeneration in rats // J Hepatol. 1995. Vol. 23, N 5. P. 578–581. doi: 10.1016/0168-8278(95)80065-4

[15]

Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res. 2006;41(1):79–84. doi: 10.1111/j.1600-079X.2006.00346.x

[16]

Pan M., Song Y.L., Xu J.M., Gan H.Z. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats // J Pineal Res. 2006. Vol. 41, N 1. P. 79–84. doi: 10.1111/j.1600-079X.2006.00346.x

[17]

Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks. PLoS One. 2016;11(1):e0148214. doi: 10.1371/journal.pone.0148214

[18]

Owino S., Contreras-Alcantara S., Baba K., Tosini G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks // PLoS One. 2016. Vol. 11, N 1. P. e0148214. doi: 10.1371/journal.pone.0148214

[19]

Fosslien E. Mitochondrial medicine — molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;31(1):25–67.

[20]

Fosslien E. Mitochondrial medicine — molecular pathology of defective oxidative phosphorylation // Ann Clin Lab Sci. 2001. Vol. 31, N 1. P. 25–67.

[21]

Acuña Castroviejo D, Martín M, Macías M, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res. 2001;30(2):65–74. doi: 10.1034/j.1600-079x.2001.300201.x

[22]

AcuñaCastroviejo D., Martín M., Macías M., et al. Melatonin, mitochondria, and cellular bioenergetics // J Pineal Res. 2001. Vol. 30, N 2. P. 65–74. doi: 10.1034/j.1600-079x.2001.300201.x

[23]

Reiter RJ, Tan DX, Mayo JC, et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–1146. doi: 10.18388/abp.2003_3637

[24]

Reiter R.J., Tan D.X., Mayo J.C., et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans // Acta Biochim Pol. 2003. Vol. 50, N 4. P. 1129–1146. doi: 10.18388/abp.2003_3637

[25]

Balkanov AS, Rozanov ID, Golanov AV, et al. Endothelium changes of peritumoral zone capillaries after brain glioblastoma adjuvant radiation therapy. Clinical and Experimental Morphology. 2021;10(1):33–40. EDN: KOULJY doi: 10.31088/CEM2021.10.1.33-40

[26]

Балканов А.С., Розанов И.Д., Голанов А.В., и др. Состояние эндотелия капилляров перитуморальной зоны после адъювантной лучевой терапии глиобластомы головного мозга // Клиническая и экспериментальная морфология. 2021. Т. 10, № 1. С. 33–40. EDN: KOULJY doi: 10.31088/CEM2021.10.1.33-40

[27]

Kurbat MN, Kravchuk RI, Ostrovskaya AB. Effect of melatonin on the morphology of mitochondria and other cellular components of the hepatocyte. Hepatology and Gastroenterology. 2018;2(2):138–142. EDN: TTCMUQ

[28]

Курбат М.Н., Кравчук Р.И., Островская О.Б. Влияние мелатонина на морфологию митохондрий и других клеточных компонентов гепатоцита // Гепатология и гастроэнтерология. 2018. Т. 2, № 2. С. 138–142. EDN: TTCMUQ

[29]

Bezborodkina NN, Okovity SV, Kudryavtseva MV, et al. Morphometry of hepatocyte mitochondrial apparatus in normal and cirrhotic rat liver. Tsitologiya. 2008;50(3):228–237. EDN: ILHEHH

[30]

Безбородкина Н.Н., Оковитый С.В., Кудрявцева М.В., и др. Морфометрия митохондриального аппарата гепатоцитов нормальной и цирротически измененной печени крыс // Цитология. 2008. Т. 50, № 3. С. 228–237. EDN: ILHEHH

[31]

Chrustek A, Olszewska-Słonina D. Melatonin as a powerful antioxidant. Acta Pharm. 2020;71(3):335–354. doi: 10.2478/acph-2021-0027

[32]

Chrustek A., Olszewska-Słonina D. Melatonin as a powerful antioxidant // Acta Pharm. 2020. Vol. 71, N 3. P. 335–354. doi: 10.2478/acph-2021-0027

[33]

Xiong Y, Ma C, Li Q, et al. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J. 2023;37(9):e23132. doi: 10.1096/fj.202301137R

[34]

Xiong Y., Ma C., Li Q., et al. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes // FASEB J. 2023. Vol. 37, N 9. P. e23132. doi: 10.1096/fj.202301137R

[35]

Areshidze DA, Kakturskiy LV, Mikhaleva LM, Kozlova MA. Influence of dark deprivation and chronic alcohol intoxication on the liver of rats. Morphology. 2023;161(2):23–35. doi: 10.17816/morph.623050

[36]

Арешидзе Д.А., Кактурский Л.В., Михалёва Л.М., Козлова М.А. Влияние темновой депривации и хронической алкогольной интоксикации на печень крыс // Морфология. 2023. Т. 161, № 2. С. 23–35. doi: 10.17816/morph.623050

[37]

Hatzis G, Ziakas P, Kavantzas N, et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol. 2013;5(4):160–169. doi: 10.4254/wjh.v5.i4.160

[38]

Hatzis G., Ziakas P., Kavantzas N., et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats // World J Hepatol. 2013. Vol. 5, N 4. P. 160–169. doi: 10.4254/wjh.v5.i4.160

[39]

Terziev D, Terzieva D. Experimental data on the role of melatonin in the pathogenesis of nonalcoholic fatty liver disease. Biomedicines. 2023;11(6):1722. doi: 10.3390/biomedicines11061722

[40]

Terziev D., Terzieva D. Experimental data on the role of melatonin in the pathogenesis of nonalcoholic fatty liver disease // Biomedicines. 2023. Vol. 11, N 6. P. 1722. doi: 10.3390/biomedicines11061722

[41]

Ku H, Kim Y, Kim AL, et al. Protective effects of melatonin in high-fat diet-induced hepatic steatosis via decreased intestinal lipid absorption and hepatic cholesterol synthesis. Endocrinol Metab (Seoul). 2023;38(5):557–567. doi: 10.3803/EnM.2023.1672

[42]

Ku H., Kim Y., Kim A.L., et al. Protective effects of melatonin in high-fat diet-induced hepatic steatosis via decreased intestinal lipid absorption and hepatic cholesterol synthesis // Endocrinol Metab (Seoul). 2023. Vol. 38, N 5. P. 557–567. doi: 10.3803/EnM.2023.1672

[43]

Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–947. doi: 10.1016/j.jhep.2018.06.008

[44]

Lebeaupin C., Vallée D., Hazari Y., et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease // J Hepatol. 2018. Vol. 69, N 4. P. 927–947. doi: 10.1016/j.jhep.2018.06.008

[45]

Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59(3):292–307. doi: 10.1111/jpi.12264

[46]

Fernández A., Ordóñez R., Reiter R.J., et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis // 2015. Vol. 59, N 3. P. 292–307. doi: 10.1111/jpi.12264

[47]

Watanabe K, Katagiri S, Hattori A. Melatonin and glucose metabolism. Glycative Stress Research. 2020;7(1):105–109.

[48]

Watanabe K., Katagiri S., Hattori A. Melatonin and glucose metabolism // Glycative Stress Research. 2020. Vol. 7, N 1. P. 105–109.

[49]

Devin A, Rigoulet M. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol. 2007;292(1):C52–C58. doi: 10.1152/ajpcell.00208.2006

[50]

Devin A., Rigoulet M. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells // Am J Physiol Cell Physiol. 2007. Vol. 292, N 1. P. C52–C58. doi: 10.1152/ajpcell.00208.2006

[51]

Baker N, Patel J, Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion. 2019;49:259–268. doi: 10.1016/j.mito.2019.06.003

[52]

Baker N., Patel J., Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics // Mitochondrion. 2019. Vol. 49. P. 259–268. doi: 10.1016/j.mito.2019.06.003

[53]

Guan Q, Wang Z, Cao J, et al. Mechanisms of melatonin in obesity: a review. Int J Mol Sci. 2021;23(1):218. doi: 10.3390/ijms23010218

[54]

Guan Q., Wang Z., Cao J., et al. Mechanisms of melatonin in obesity: a review // Int J Mol Sci. 2021. Vol. 23, N 1. P. 218. doi: 10.3390/ijms23010218

[55]

Guha M, Maity P, Choubey V, et al. Melatonin inhibits free radicalmediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J Pineal Res. 2007;43(4):372–381. doi: 10.1111/j.1600-079X.2007.00488.x

[56]

Guha M., Maity P., Choubey V., et al. Melatonin inhibits free radicalmediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection // J Pineal Res. 2007. Vol. 43, N 4. P. 372–381. doi: 10.1111/j.1600-079X.2007.00488.x

[57]

Wu J, Danielsson A. Detection of hepatic fibrogenesis: a review of available techniques. Scand J Gastroenterol. 1995;30(9):817–825. doi: 10.3109/00365529509101585

[58]

Wu J.A., Danielsson A. Detection of hepatic fibrogenesis: a review of available techniques // Scand J Gastroenterol. 1995. Vol. 30, N 9. P. 817–825. doi: 10.3109/00365529509101585

Funding

Правительство РФGoverment of the Russian Federation(122030200535-1)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/