Changes in the pathomorphological condition of the myocardium in dysferlinopathy mice (Bla/J type)

Maria A. Savelyeva , Sergey N. Bardakov , Alexey M. Emelin , Roman V. Deev

Morphology ›› 2023, Vol. 161 ›› Issue (3) : 9 -18.

PDF (6843KB)
Morphology ›› 2023, Vol. 161 ›› Issue (3) : 9 -18. DOI: 10.17816/morph.627332
Original Study Articles
research-article

Changes in the pathomorphological condition of the myocardium in dysferlinopathy mice (Bla/J type)

Author information +
History +
PDF (6843KB)

Abstract

BACKGROUND: Dysferlinopathy is heritable progressive muscular dystrophy caused by DYSF mutation. Currently, although skeletal muscle pathology has been defined, only fragmentary and limited myocardium histopathology data are available.

AIM: The study aimed to analyze the pathomorphological status of the myocardium in Bla/J mice models of dysferlinopathy at different ages.

MATERIALS AND METHODS: Data from two experimental groups were analyzed: Bla/J mice with DYSF knockout on 3, 6, and 12 months old and control wild-type Balb/C mice aged 6 months. The expressions and patterns of dyeing of protein dysferlin in the immunofluorescent search method were analyzed. These were held such parameters of the histological characteristic of the myocardium of three dyeing protocols (hematoxylin and eosin, iron hematoxylin by Rego, and hematoxylin-basic fuchsin-picric acid by Lie), and morphometry of the parameters of the cardiomyocytes (length, width of cardiomyocytes, and nuclear perimeter).

RESULTS: The immunofluorescent search method revealed high levels of dysferlin in the myocardium of the control group. Statistical analysis showed significant differences between Bla/J and Balb/C mice: the increasing length and width of cardiomyocytes in dysferlinopathy by 49.9% ((95% confidence interval, 45.9–57.4) and 35.6 (95% confidence interval, 32.9–37.9)), respectively. Nucleus perimeter was significantly reduced in the dysferlinopathy group with disease duration of 6 months (by 23.9 (95% confidence interval, 20.2–27.5) compared with the group with disease duration of 3 months and by 18.8% (95% confidence interval, 8.5–19.7)) and the control group. Consequently, progressive hypertrophy of cardiomyocytes, increasing deformation in cardiomyocytes, intercalated disk destruction, hypoxia features, and necrosis indication were observed, resulting in fibrosis. A pattern of cardiomyocyte size reduction dependent on the aging process was observed.

CONCLUSIONS: Dysferlin deficiency leads to significant damage in the myocardium of Bla/J mice.

Keywords

heart / myocardium / Bla/J mice / dysferlinopathy

Cite this article

Download citation ▾
Maria A. Savelyeva, Sergey N. Bardakov, Alexey M. Emelin, Roman V. Deev. Changes in the pathomorphological condition of the myocardium in dysferlinopathy mice (Bla/J type). Morphology, 2023, 161(3): 9-18 DOI:10.17816/morph.627332

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Straub V, Murphy A, Udd B; LGMD workshop study group. 229th ENMC international workshop: limb girdle muscular dystrophies — nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscul Disord. 2018;28(8):702–710. doi: 10.1016/j.nmd.2018.05.007

[2]

Straub V., Murphy A., Udd B.; LGMD workshop study group. 229th ENMC international workshop: limb girdle muscular dystrophies — nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017 // Neuromuscul Disord. 2018. Vol. 28, N 8. P. 702–710. doi: 10.1016/j.nmd.2018.05.007

[3]

Mah JK, Korngut L, Fiest KM, et al. A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci. 2016;43(1):163–177. doi: 10.1017/cjn.2015.311

[4]

Mah J.K., Korngut L., Fiest K.M., et al. A systematic review and meta-analysis on the epidemiology of the muscular dystrophies // Can J Neurol Sci. 2016. Vol. 43, N 1. P. 163–177. doi: 10.1017/cjn.2015.311

[5]

Umakhanova ZR, Bardakov SN, Mavlikeev MO, et al. Twenty-year clinical progression of dysferlinopathy in patients from Dagestan. Front Neurol. 2017;8:145. doi: 10.3389/fneur.2017.00145

[6]

Umakhanova Z.R., Bardakov S.N., Mavlikeev M.O., et al. Twenty- year clinical progression of dysferlinopathy in patients from Dagestan // Front Neurol. 2017. Vol. 8. P. 145. doi: 10.3389/fneur.2017.00145

[7]

Bashir R, Strachan T, Keers S, et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum Mol Genet. 1994;3(3):455–457. doi: 10.1093/hmg/3.3.455

[8]

Bashir R., Strachan T., Keers S., et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p // Hum Mol Genet. 1994. Vol. 3, N 3. P. 455–457. doi: 10.1093/hmg/3.3.455

[9]

Folland C, Johnsen R, Botero Gomez A, et al. Identification of a novel heterozygous DYSF variant in a large family with a dominantly-inherited dysferlinopathy. Neuropathol Appl Neurobiol. 2022;48(7):e12846. doi: 10.1111/nan.12846

[10]

Folland C., Johnsen R., Botero Gomez A., et al. Identification of a novel heterozygous DYSF variant in a large family with a dominantly-inherited dysferlinopathy // Neuropathol Appl Neurobiol. 2022. Vol. 48, N 7. P. e12846. doi: 10.1111/nan.12846

[11]

Anderson LV, Davison K, Moss JA, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet. 1999;8(5):855–861. Corrected and republished from: Hum Mol Genet. 1999;8(6):1141. doi: 10.1093/hmg/8.5.855

[12]

Anderson L.V., Davison K., Moss J.A., et al. Dysferlin is a plasma membrane protein and is expressed early in human development // Hum Mol Genet. 1999. Vol. 8, N 5. P. 855–861. Corrected and republished from: Hum Mol Genet 1999. Vol. 8. P. 1141. doi: 10.1093/hmg/8.5.855

[13]

Bulankina AV, Thoms S. Functions of vertebrate ferlins. Cells. 2020;9(3):534. doi: 10.3390/cells9030534

[14]

Bulankina A.V., Thoms S. Functions of vertebrate ferlins // Cells. 2020. Vol. 9, N 3. P. 534. doi: 10.3390/cells9030534

[15]

Chernova ON. Features of structure and reparative histogenesis of transverse striated skeletal muscle tissue in mice with genetically determined dysferlin deficiency [dissertation]. Saint Petersburg; 2021. EDN: DNCGFD

[16]

Чернова О.Н. Особенности строения и репаративного гистогенеза поперечнополосатой скелетной мышечной ткани у мышей с генетически обусловленным дефицитом дисферлина: дис. … канд. мед. наук. Санкт-Петербург, 2021. EDN: DNCGFD

[17]

Ho M, Post CM, Donahue LR, et al. Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet. 2004;13(18):1999–2010. doi: 10.1093/hmg/ddh212

[18]

Ho M., Post C.M., Donahue L.R., et al. Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency // Hum Mol Genet. 2004. Vol. 13, N 18. P. 1999–2010. doi: 10.1093/hmg/ddh212

[19]

Cárdenas AM, González-Jamett AM, Cea LA, et al. Dysferlin function in skeletal muscle: possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol. 2016;283(Pt A): 246–254. doi: 10.1016/j.expneurol.2016.06.026

[20]

Cárdenas A.M., González-Jamett A.M., Cea L.A., et al. Dysferlin function in skeletal muscle: possible pathological mechanisms and therapeutical targets in dysferlinopathies // Exp Neurol. 2016. Vol. 283(Pt A). P. 246–254. doi: 10.1016/j.expneurol.2016.06.026

[21]

Gayathri N, Alefia R, Nalini A, et al. Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J Pathol Microbiol. 2011;54(2):350–354. doi: 10.4103/0377-4929.81636

[22]

Gayathri N., Alefia R., Nalini A., et al. Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue // Indian J Pathol Microbiol. 2011. Vol. 54, N 2. P. 350–354. doi: 10.4103/0377-4929.81636

[23]

Hofhuis J, Bersch K, Büssenschütt R, et al. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci. 2017;130(5):841–852. doi: 10.1242/jcs.198861

[24]

Hofhuis J., Bersch K., Büssenschütt R., et al. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy // J Cell Sci. 2017. Vol. 130, N 5. P. 841–852. doi: 10.1242/jcs.198861

[25]

Hornsey MA, Laval SH, Barresi R, Lochmüller H, Bushby K. Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord. 2013;23(5):377–387. doi: 10.1016/j.nmd.2013.02.004

[26]

Hornsey M.A., Laval S.H., Barresi R., et al. Muscular dystrophy in dysferlin-deficient mouse models // Neuromuscul Disord. 2013. Vol. 23, N 5. P. 377–387. doi: 10.1016/j.nmd.2013.02.004

[27]

Chase TH, Cox GA, Burzenski L, et al. Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B. Am J Pathol. 2009;175(6):2299–2308. doi: 10.2353/ajpath.2009.080930

[28]

Chase T.H., Cox G.A., Burzenski L., et al. Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B // Am J Pathol. 2009. Vol. 175, N 6. P. 2299–2308. doi: 10.2353/ajpath.2009.080930

[29]

Han R, Bansal D, Miyake K, et al. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest. 2007;117(7):1805–1813. doi: 10.1172/JCI30848

[30]

Han R., Bansal D., Miyake K., et al. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury // J Clin Invest. 2007. Vol. 117, N 7. P. 1805–1813. doi: 10.1172/JCI30848

[31]

Nishikawa A, Mori-Yoshimura M, Segawa K, et al. Respiratory and cardiac function in japanese patients with dysferlinopathy. Muscle Nerve. 2016;53(3):394–401. doi: 10.1002/mus.24741

[32]

Nishikawa A., Mori-Yoshimura M., Segawa K., et al. Respiratory and cardiac function in japanese patients with // Muscle Nerve. 2016. Vol. 53, N 3. P. 394–401. doi: 10.1002/mus.24741

[33]

Tan SML, Ong CC, Tan KB, et al. Subclinical cardiomyopathy in Miyoshi myopathy detected by late gadolinium enhancement cardiac magnetic resonance imaging. Int Heart J. 2021;62(1):186–192. doi: 10.1536/ihj.20-354

[34]

Tan S.M.L., Ong C.C., Tan K.B., et al. Subclinical cardiomyopathy in miyoshi myopathy detected by late gadolinium enhancement cardiac magnetic resonance imaging // Int Heart J. 2021. Vol. 62, N 1. P. 186–192. doi: 10.1536/ihj.20-354

[35]

Korzhevskiy DE, Gilyarov AV. Fundamentals of histologic technique. Saint Petersburg: SpecLit; 2010. 95 p. (In Russ).

[36]

Коржевский Д.Э., Гиляров А.В. Основы гистологической техники. Сaнкт-Петербург: СпецЛит, 2010. 95 с. EDN: RTTUSB

[37]

Mavlikeev MO, Arkhipova SS, Chernova ON, et al. Short course of histological techniques: educational manual. Kazan’: Kazanskij universitet; 2020. 107 p. (In Russ).

[38]

Мавликеев М.О., Архипова С.С., Чернова О.Н., и др. Краткий курс гистологической техники: учебно-методическое пособие. Казань: Казанский университет, 2020. 107 с.

[39]

Øyvind Hammer DATH, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 2001;4(1). Available from: https://palaeo-electronica.org/2001_1/past/past.pdf

[40]

Øyvind Hammer D.A.T.H., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. 2001. Vol. 4, N 1. Режим доступа: https://palaeo-electronica.org/2001_1/past/past.pdf

[41]

Kraemer HC, Kupfer DJ. Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry. 2006;59(11):990–996. doi: 10.1016/j.biopsych.2005.09.014

[42]

Kraemer H.C., Kupfer D.J. Size of treatment effects and their importance to clinical research and practice // Biol Psychiatry. 2006. Vol. 59, N 11. P. 990–996. doi: 10.1016/j.biopsych.2005.09.014

[43]

Coe R. Effect size calculator. Cambridge CEM; 2000. Available from: https://lbecker.uccs.edu/

[44]

Coe R. Effect size calculator. Cambridge CEM, 2000. Режим доступа: https://lbecker.uccs.edu/

[45]

Wenzel K, Geier C, Qadri F, et al. Dysfunction of dysferlin-deficient hearts. J Mol Med (Berl). 2007;85(11):1203–1214. doi: 10.1007/s00109-007-0253-7

[46]

Wenzel K., Geier C., Qadri F., et al. Dysfunction of dysferlin-deficient hearts // J Mol Med (Berl). 2007. Vol. 85, N 11. P. 1203–1214. doi: 10.1007/s00109-007-0253-7

[47]

Bonda TA, Szynaka B, Sokołowska M, et al. Remodeling of the intercalated disc related to aging in the mouse heart. J Cardiol. 2016;68(3):261–268. doi: 10.1016/j.jjcc.2015.10.001

[48]

Bonda T.A., Szynaka B., Sokołowska M., et al. Remodeling of the intercalated disc related to aging in the mouse heart // J Cardiol. 2016. Vol. 68, N 3. P. 261–268. doi: 10.1016/j.jjcc.2015.10.001

[49]

Hofhuis J, Bersch K, Wagner S, et al. Dysferlin links excitation-contraction coupling to structure and maintenance of the cardiac transverse-axial tubule system. Europace. 2020;22(7):1119–1131. doi: 10.1093/europace/euaa093

[50]

Hofhuis J., Bersch K., Wagner S., et al. Dysferlin links excitation-contraction coupling to structure and maintenance of the cardiac transverse-axial tubule system // Europace. 2020. Vol. 22, N 7. P. 1119–1131. doi: 10.1093/europace/euaa093

[51]

Maier LS, Bers DM. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol. 2002;34(8):919–939. doi: 10.1006/jmcc.2002.2038

[52]

Maier L.S., Bers D.M. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond // J Mol Cell Cardiol. 2002. Vol. 34, N 8. P. 919–939. doi: 10.1006/jmcc.2002.2038

[53]

Shevchenko YuL, Plotnitsky AV, Sudilovskaya VV, et al. The morphology and markers of the immobilizing interstitial fibrosis of the heart. Bulletin of Pirogov National Medical & Surgical Center. 2022;17(3):84–93. EDN: CAKOXR doi: 10.25881/20728255_2022_17_3_84

[54]

Шевченко Ю.Л., Плотницкий А.В., Судиловская В.В., и др. Морфология маркеры иммобилизирующего интерстициального фиброза сердца // Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2022. Т. 17, № 3. 84–93. EDN: CAKOXR doi: 10.25881/20728255_2022_17_3_84

[55]

Wei B, Wei H, Jin JP. Dysferlin deficiency blunts β-adrenergic-dependent lusitropic function of mouse heart. J Physiol. 2015;593(23):5127–5144. doi: 10.1113/JP271225

[56]

Wei B., Wei H., Jin J.P. Dysferlin deficiency blunts β-adrenergic-dependent lusitropic function of mouse heart // J Physiol. 2015. Vol. 593, N 23. P. 5127–5144. doi: 10.1113/JP271225

[57]

Suzuki N, Takahashi T, Suzuki Y, et al. An autopsy case of a dysferlinopathy patient with cardiac involvement. Muscle Nerve. 2012;45(2):298–299. doi: 10.1002/mus.22247

[58]

Suzuki N., Takahashi T., Suzuki Y., et al. An autopsy case of a dysferlinopathy patient with cardiac involvement // Muscle Nerve. 2012. Vol. 45, N 2. P. 298–299. doi: 10.1002/mus.22247

[59]

Choi ER, Park SJ, Choe YH, et al. Early detection of cardiac involvement in Miyoshi myopathy: 2D strain echocardiography and late gadolinium enhancement cardiovascular magnetic resonance. Journal of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12(1):31. doi: 10.1186/1532-429X-12-31

[60]

Choi E.R., Park S.J., Choe Y.H., et al. Early detection of cardiac involvement in Miyoshi myopathy: 2D strain echocardiography and late gadolinium enhancement cardiovascular magnetic resonance // J Cardiovasc Magn Reson. 2010. Vol. 12, N 1. P. 31. doi: 10.1186/1532-429X-12-31

Funding

Министерство науки и высшего образования РФMinistry of Science and Higher Education of Russia(075-15-2021-1346)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (6843KB)

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/